Loading...
HomeMy WebLinkAboutEngineering, product review, hardy plank o N ' 7 PROJECT RIO-2683-17 ENGINEERING EVALUATION REPORT FOR ATTACHING JAMES HARDIE@ BRAND FIBER-CEMENT PLANKS TO WOOD OR METAL FRAMED WALLS WITH VARIOUS FASTENERS JAMES HARDIE BUILDING PRODUCTS, INC. 10901 ELM AVENUE FONTANA,CA 92337 REVIEWED FOR CODE COMPLIANCE TABLE OF CONfiENT8T_ LUCIE COON TYPAGE COVER PAGE OCC 1 EVALUATION SUBJECT 2 EVALUATION SCOPE 2 EVALUATION.PURPOSE 2 REFERENCE REPORTS dile cop, 2 TEST RESULTS 3 TABLE 1A and1B, RESULTS OF TRANSVERSE LOAD TESTING 3.4 SUMMARY OF.FASENTER DESIGN LOAD CALCULATIONS 5-6 TABLE 2A THROUGH TABLE 20,ALLOWABLE DESIGN LOADS BY PLANK WIDTH 7-11 DESIGN WIND LOAD PROCEDURES 12 TABLE 3, COEFFICIENTS AND CONSTANTS USED IN DETERMINING V AND p 12 TABLE 4,ALLOWABLE STRESS-DESIGN C&C PRESSURES EXPOSURE B 13 TABLE 5,ALLOWABLE STRESS DESIGN C&C PRESSURES EXPOSURE C 13 TABLE 6,ALLOWABLE STRESS DESIGN C&C PRESSURES EXPOSURE D 13 TABLE 7,ALLOWABLE WIND SPEED(MPH)FOR HARDIEPLANK SIDING 14-57 LIMITATIONS OF USE 57 AS PRODUCT EVALUATOR,THE UNDERSIGNED CERTIFIES THAT THE LISTED PRODUCTS ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ASCE 7-10,THE 2017 FLORIDA BUILDING CODE, AND THE 2015 INTERNATIONAL BUILDING CODE. I. PREPARED BY: I RONALD 1. OGAWA&ASSOCIATES, INC. 16835ALGONQUIN STREET4443 olos°'� OGAWq�''� HUNTINGTON BEACH,CA 92649 °01 Qom•:•.•• o 714-292-2602 714-847-4595 FAX 21 ; ��`o��ir/rrrr�s RONALD 1.OGA%NA ASSOCIATES,INC. 16835 ALGONQUIN STREET 9443 HUNTINGTON BEACH,CA 92649 714-292-2602 714-647-4595 FAX PROJECT:RIO-2553-15 JAMES HARDIE BUILDING PRODUCTS,INC. 1-BBB-542-7343 info@jameshardie.com EVALUATION SUBJECT HardlePlank@ Lap Siding James Hardie Product Trade Names covered In this evaluation: HardiePlank®Lap Siding,CemPlankG Siding,Prevail^+Lap Siding EVALUATION SCOPE: ASCE 7-10 2017 Florida Building Code 2015 International Building Code® EVALUATION PURPOSE: This analysis is to determine the mandmum design 3-second gust wind speed to be resisted by an assembly of HardlePlank(CemPlank,Prevail Lap)siding fastened to wood or metal framing with nails or screws. REFERENCE REPORTS: I 1.Intertek Report 3087913(ASTM C1186)Material properties HardiePlank Siding • I 2.Ramtech Laboratories,Inc.Report 10593-9611395(ASTM E330)Transverse Load Test,5116"Thick by7.5 inch wide HardiePlank Lap Siding installed an 2X4 W-Rrwood studs space at 16 inches on center with a 0.093 inch shank by 0222 inch head diameter by 2.5 inch long galvanized siding nail 3.Ramtech Laboratories,Inc.Report IG1034-88(ASTM E330)Transverse Load Test,5/1rThlrk by 9.5 inch wide HardiePiank Lap Siding installed on 2X4 Hem-Fir wood studs space at 16 inches on centerwith a Number 11 gauge 1-314 inch long galvanized roofing nag 4.Ramtech Laboratories,Inc.Report IC•1020-88(ASTM E330)Transverse Load Test,5116"Thick by 9.5 inch wide HardnePiank Lap Siding installed on 2X4 Hera-Firwood studs space at 16 inches on center with a 6d common nag 5.Ramtech Laboratories,Inc.Report 2149-07-10(C)(ASTM E330)Transverse Load Test,5/16"Thick by 8.25 inch wide HardiePlank Lap Siding installed on 2X4 Doug-Fir-Larch wood studs space at 16 inches on center with an 8d ring shank box nag,0.113 inch shank by 0.260 inch head diameter by 2.375 inch long 6.Ramtech Laboratories,Inc.Report 2149-07-10(E)(ASTM E330)Transverse Load Test,6/16°Thick by 8.25 inch wide HardiePlank Lap Siding installed on 2X4 Doug-Fir-Larch wood studs space at 16 inches on center with a 0.092 Inch shank by 0222 inch head diameter by 2.5 inch long galvanized siding nag 7.Ramtech Laboratories,Inc.Report 2341-08.06(ASTM E330)Transverse Load Test,5/16"Thick by 8.25 inch wide HanllePlaNk lap Siding installed on 2X4 Doug-Fir Larch wood studs space at 16 inches on center with a 0.092 Inch shank by 0.222 inch head diameter by 21nch long galvanized siding nag 8.Ramtech Laboratories,Inc.Report 2149-07-10(F)(ASTM E330)Transverse Load Test,5/16"Thick by 825 inch wide HandlePlank Lap Siring installed an 2X4 Spruce-Pine-Fur wood studs space at 16 inches on center with a 0.092 inch shank by 0.222 inch head diameter by 2.6 Inch long galvanized siding nag 9..Ramtech Laboratories,Inc.Report 11149/1554(ASTM E330)Transverse Load Test 5116"Thick by 625 inch wide HardiePlank Lap Siding installed on 20 gauge metal studs spaced at 16 and 24 inches on center with ET&F knurled pin fastener 10.Ramtech Laboratories,Inc.Report 11149/1554B(ASTM E330)Transverse Load Test 5116 Thick by 8.25 inch wide HardiePlank Lap Siding installed on 20 gauge metal studs spaced at 16 and 24 I i I6Bal//Y//�sOos� ' �11tt11�� rj W4 r 0 121 ONA a 2 RONALD 1.OGAWA ASSOCIATES,INC. 16835 ALGONOUIKI STREET#443 HUNTINGTON BEACH,CA 92649 714-202-2602 714-847-4595 FAX PROJECT:RIO-2553-15 JAMES HARDIE BUILDING PRODUCTS,INC. 1-BBB-542-7343 info@jameshardie.com TEST RESULTS: Table 1A.Results of Transverse Load Testing for Configurations with Steel Framing Report Number 11149 11149 11149 11149 11149 11149 IF1D35 88 11564 /1554 /1554B. /15548 11554A 11554A Test Agency Ramtech Ramtech Ramtech Ramtech Ramtech Ramtech Reattach Thickness(in.) 0.3125 0.3126 0.3125 0.3125 0.3125 0.3125 0.3125 Width(in.) 6.25 6.25 8.25 825 12 12 • 9.5 20 ga steel 20 ga. ZD ga. 20 ga.steel Frame Type 20 ga. 20 ga. 2D ga. steel steel steel studs steel studs studs steel studs suds studs studs Frame Spacing(t.) 16 24 16 24 16 24 16 ET&F ET&F ET&F ET&F ET&F ETBF No.8 X 1- 0.100" 0.101)' 0.101)° 1/4"long X knurl 0.100° Immled knuded knuded knuded 0.375" knurled knurled Imudad Fastener Type shank shank shank shards shank shank head diameter diameter diameter diameter diameter.25WD 0.26TeO x0.313' diemeterx x0.250' x0250' ribbed 0250'HD 0 250°HD HD x 1.5' 0.313'HD y1)x 1.5' HD z 1.5' wafer head x 1.7 long x 1.5'tong long x 1.5'long long long screw Fastening Method Face nae Face nail Blind nail Blind nag Face nail Face nail Blind nail Ultimate Load(psf) 317 173 64 60 151 81 169.2 Design Load(psi) 105.7 57.7 21.3 16.7 60.3 27.0 66.4 Effective Tn'bufery Area(sgft) 0.556 0.833 0.778 1.161 1.194 1.792 0.917 Fastener Load,as tested (Ib6astener) Be.? 48.1 16.6 19A 601 4&4 51.7 1.Allowable Design Load is the Ultimate Load divided by a Factor of safety of 3. 2.HardieShingle Siding compiles with ASTM C1186.Standard Specification for Grade n,Type A Non-asbestos Fiber-Cement Flat Sheets I i evil QGAW,q �o o 4 se BiCBCA/elf 3 i , I RONALD 1.OGAWA ASSOCIATES,INC. 16835 ALGONQUIN STREET#443 HUNTINGTON BEACH,CA 92649 714-2aZ-2602 714-847-4595 FAX PROJECT:RIO-2553-15 JAMES HARDIE BUILDING PRODUCTS,INC. 1-888-542-7343 infb@jameshardie.com Table 1 B.Results of Transverse Load Testing for Configurations with Wood Framing 10593 IC-1020- 2149-07- 2149-07- 2341-08- 2149-07-10 Report Number 9611395 IG1034 88 88 10 C 10 06 (F) Test Agency Ramtech Ramtech Ramtech Ramtech Ramtech Ramtech Ramtech Thickness(in.) 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 Width(in.) 7.5 9.5 9.5 8.25 8.25 8.25 8.25 Frame Type 2X4 wood 2X4 wood 2X4 wood 2X4 wood 2X4wood 2X4wood 2X4wood Hem-Fir' Hem-Fir' Hem-Fir' DFL DFL DFL SPF Frame Spacing(in.) 16 16 16 16 16 16 16 8d ting 8d siding fid siding 8d siding 1-314" ed sttt'mg fid shank box trail, nail, Fastener Type nal,0.093" No.11 ga common nail.0.113"0.092"X 0.092"X 1 0.092° X 0.222°X Roofing X 0.222`X 2.5° nail nal X 0.260°X 0.222°X 0.222°X 25" 2.375" 2.5" 2° Fastener Length(in.) 25 1.75 2 2.375 2.5 2 2.5 Fastening Method Blind nail Blind nail Face nail Face nal Face nal Face nal Face nal Ultimate Load(psf) 92 146.6 199 296 253 165 168 Design Load(psf) 30.7 48.9 66.3 98.7 84.3 55.0 56.0 Effective Tributary Area(sgft) 0.694 0.917 0.917' 0.778 0.776 0.778 0.778 Fastener Load,as tested 21.3 44.8 60.8 76.7 65.6 42.8 43.6 (lb/fastener) Adjusted withdrawal design load Calculated fastenerwithdrawal load is aonQared vBth the test result (lb/fastener).VV' 51.1 43.6 39.2 84.0 67.0 49.1 43.0 and the more conservative one will be used. Net Fastener Penetratiow(in.),P 2.186 1.438 1.375 1.750 1.875 1.375 1.875 Wood Specific Gravely,G 0.42' 0.42• 0.42' 0.50 0.50 0.50 0.42 Nal Shank Diameter(in.),D 0.093 0.120 0.113 0.113 0.092 0.092 0.092 Withdrawal design value per NDS 2015 or ESR-1539(Wain.penetration), 14.6 18.9 17.9 30.0 22.3 22.3 14.3 W The assigned specific gravity of Hem Fir in NDS-2015 is 0.43,however 0.42 is used In this analysis in order to match the specific gravity of SPF lumber,which is more popular. 1.Alowable Design Load is the Ultimate Load divided by a Factor of safety of 3. 2.MardieShingle Sliding complies with ASTM C1186,Standard Specification for Grade 11,Type A Non-asbestos Fiber-Cement Flat Sheets. 3.Calculated fastener a thdrawal load is compared with the test result and the more conservative one will be used. For all cases in the table,the adjusted withdrawal design value,W.Is calculated as W=CD"W'P Where, CD=load duration factor per NDS-2015 Table 2.3.2 for windlearthquake load=1.6 W=withdrawal design value,calculated per NDS-2015 or ESR-1639,whichever applicable P=fastener embedment depth,In. When nal shank,D,2 0.099 inch but:9 0.375 inch for smooth shank nals,NDS-2015 equation(11.25)is used to calculate withdrawal design value W=1380'G(5/2)•D Where, G-wood specific gravity per Table 11.3.3A D=nail shank diameter,In. When nal shank,D.is less than 0.099 inch,or in the case offing shank nails, the withdrawal design values were obtained from ICC-ES EBR-1539 Table'I�O�BOA®e�oo�o' 01 4,ta 4 24 2 STATE 0 . f��PBod66600BF6F 4 i I RONALD 1.OGAWA ASSOCIATES,INC. 16835 ALGONQUIN STREET iA43 HUNTINGTON BEACH,CA 92649 714-292-2602 714-847-4595 FAX PROJECT:RIO-2553-15 JAMES HARDIE BUILDING PRODUCTS,INC. 1-888-542-7343 info@jameshardie.com uc�wn rrmv 1 AAA Fiber-cement siding transverse load capacity(wind toad capacity)is determined via compliance testing to transverse load national test standards.Via the transverse load testing an allowable design load Is determined based on a factor of safety of 3 applied to the ultimate test load. Since the allowable design load is based on factor of safety of 3,allowable design loads on fiber-cement siding correlate directly to required design pressures for Allowable Stress Design,and therefore should be used with combination loading equations for Allowable Stress Design(ASD). By using the combination loading equations for Allowable Stress Design(ASD),the tested allowable design loads forfibercement siding we aligned with the wind speed requirements in ASCE 7-10 Figure 26.5-1A,Figure 26.6-18,and Figure 26.5-1C. For this analysis,to calculate the pressures in Tables 4,5,and 6,the load combination will be in accordance with ASCE 7-�10 Section 2.4 combining nominalloads using allowable stress design,load combination 7. Load combination 7 uses a load factor of 0.6 applied to the wind velocity pressure. Equation 1, q,=0.00256%'Ka•Kd•V2 (ref.ASCE 7-10 equation 30.3-1) velocity pressure at height z K:,velocity pressure exposure coefficient evaluated at height z Kn,topographic factor K,,wind directionality,factor V,basic wind speed(3- Equation 2, V=V,e (ref.2015/BC&2017 FBC Section 16021 de6Mions) Vw,ultimate design wind speeds(3-second gust MPH)determined from 12015 IBC.2017 FBC)Figures 1609.3(1),1609.3(2),or 1609.3(3); ASCE 7-10 Figures 26.54A,B,or C Equation 3, p--gZ'(GC,GC,) (ref.ASCE 7-10 equation 30.6-1) GC,,,product of odemal pressure coefficient and gust-effect factor GCa,product of Internal pressure coefficient and gust-affect factor p,design pressure(PSF)for siding(allowable design load for siding) To determine design pressure,substitute q,into Equation 3, Equation 4, p-0.00256*tVKn Kd'V,r,2'(GCP-GCy) Allowable Stress Design,ASCE 7-10 Section 2.4.1,load combination 7, Equation 5, 0.61)+0.6W (ref.ASCE 7-10 section 24.1.load combination 7) D,dead load W,wind load(load due to wind pressure) To detannine the Allowable Stress Design Pressure,apply the load factor for (wind)from Equation 4 to p(design pressure)determined from equation 4 Equation 6, p-d=0.6101 Equation 7, pmd=0.610.00256'K,'K=*Kd*V 2&(GCp-GCV)) Equation 7 is used to populate Table 4,a and 6. i To determine the allowable ultimate bast-wind speed for Hartle Sing in Table 7,solve Equation 7 forVte, Equation 8, Ve=(p./0.6'0.00256`Ks'KnMCd•(GCp-GCO)os i Applicable to methods spedfied in Exceptions 1 through 3 of(201518C,2017 FBC]Section 1609.1.1.,to determine the allowable nominal design wind speed(Vasd)for Hardia Siding in Table 7,apply the conversion formula below, Equation 8, V.,=V,&*(0.6 u lref.20151BC&20`S1O7 FBC Se e 0 dn .4.9 11, V.�d,Nominal design windspeed(3-second Cest mph) (ref.20f5 feC82017 FBp Table 3,Coefficients and Constants used In Determining V and p. L%% i E•• �.pi K� wen Zane 1. Height(ft) Exp B Exp C Exp D i(„ Kit GC, G 4a 0-15 0.7 0.85 1:03 hs8o 1 0.95 AA 0.18 � Z y 20 0.7 0.9 1.08 1 0.85 -1.4 0.18 25, 0.7 0.94 1.12 1 0.85 -1.4 0.18 n 30 0.7 0.98 1,16 1 0.85 -1.4 0.18 a U� •� 35 0.73 1.01 1.19 1 0.85 -1.4 0.18 45 0 785 lobs 1.245 t 0.855 i.a 0.18 �Q�'••�•�`����'"� s� �� 50 0.81 1.09 127 1 0.85 -1.4 0.18 55 0.93 1.11 1.29 1 0.85 -1.4 0.18 AV � 6 s�`''amB06ClB'F�'f. 12 RONALD 1.OGAINA ASSOCIATES,INC. 16835ALGONQUIN STREET 4443 HUNTINGTON BEACH,CA 82649 714-292-2602 714-847-4595 FAn PROJECT.RIO-2553-15 JA04ES HARDIE BUILDING PRODUCTS,INC. 1-888-542-7343 InFa@jameshardie.com 60 0.85 1.13 1.31 1 0.65 -1.4 0.18 10D 0.99 1.26 1.43 1V60 1 0.85 -1.8 0.18 Table 4,Allowable Stress Design-Component and Cladding(CSC)Pressures(PSF)to be Resisted at Various Wind Speeds-Wind Exposure Category 8, Wind Speed(3- second gust) 100 105 110 115 120 13D 140 150 160 170 180 190 1 200 210 Height(ft) .B B B B B B B B B B B B B B 0-15 -14.4 -15.9 -17.5 49.1 ,20.6 -24.4 -28.3 32.5 37.0 -41.7 -46.8 -52.1 -67.6 -63,7 20 -14.4 -15.9 -17,5 -19.1 -20,8 -24,4 -28.3 32.5 37.0 -41.7 46.8 52.1 57.8 -63.7 25 -14,4 -15.9 -17.5 -19.1 -20.1 -24.4 -28.3 -325 -37.0 -41.7 -46.8 -52.1 -57.8 -63.7 30 ,14,4 -15,9 -17.5 -19.1 -20.8 -24.4 -28.3 -32.5 37.0 - -41.7 -46.8 521 -57.8 -633 35 -15,1 -16.6 -182 -19.9 -21.7 -25A -29.5 33.9 38.6 -43.5 48.8 54.4 -60.2 -66A 40 -15.7 -17.3 -19.0 -20.7 .22.6 -26.5 30,7 -35.3 40.1 -45.3 -50.8 55.6 -52,7 -69.1 45 -16,2 -17.9 -19.6 -21.4 -23.3 -27.4 31.7 -36.4 -41.5 -46.8 52.5 -58.5 -64.6 -71.4 50 -16.7 -18A -202 -221 -24.1 -28.2 32-7 37.6 -428 -483 -54.1 -603 196.8 -73.7 65 -17.1 -18.9 -20.7 -22.6 -24.7 1 -28.9 33.6 .38.6 -43.8 -49.5 -55.5 -61,8 -68,5 -75.5 60 -1 ,5 ----f9-.3 -21.2 -23,2 -2 -2 .6 -34.4 39.5 44.9 0.7 - 6- 63.3 =-0 - ,3 10D -25.6 -282 -31.0 . 33.8 36.9 -43.3 502 -57,6 -65.5 -74.0 -82.9 -92A -102A -112.9 Table 6,Allowable Stress Design-Component and Cladding(C&C)Pressures(PSF)to be Resisted at Various Wind Speeds-Wind Exposure Category C, Wind Speed(3- second gust) 100 105 110 115 120 130 140 150 160 170 18D 190 200 210 Height(ft) C C C C C C C C C C C C C C 0-15 -17.5 -19.3 -212 -232 -252 -29.6 34A 39.5 -44.9 -50,7 -66.8 -63.3 70.1 77.3 20 -16.6 -20.5 -225 -24.6 -26.7 -31.4 -36.4 41.8 47.5 53.7 -602 -67,0 74.3 81.9 26 -19.4 -21.4 -23,5 -25.6 -27.9 328 38.0 43.6 -49,6 55.0 52.8 -70.0 -77.6 -85.5 90 -202 -22.3 -24.5 -26.7 -29.1 -342 -39.6 45.5 -51.8 SBA -65.6 -73.0 -80,9 -892 35 -20.6 -23.0 -25.2 -27.6 30.0 352 -40.8 -46.9 -63.3 -602 -67.5 -75.2,03 -91.9 40 -21.5 -23.7 -26.0 -28.4 -30.9 362 42.0 48.3 54.9 -62.0 -69.5 -77.4 415.8 -94.6 45 -22.0 -242 -26.6 -29.1 -31.6 37.1 -43.1 -49.4 -58.2 -63.5 -712 -79.3 -87.9 -96.9 60 -22.5 -24.8 -27.2 -29.7 32.4 38.0 -44.1 -50.6 -67.6 -65.0 -72.9 :M.2 -09.9 -992 55 -22.9 -252 -273 -30.3 -33.0 -38.7 -44.9 -51.5 -58.6 -662 .742 -82.7 -91.6 -101.0 - 60 -23.3 ----2T2- 30.8 33.6 39.4 --4-KT- 52A 59. -:U-4- -755 -84.1 -912 70-1-8 100 -32,6 -35.9 39,4 43.1 46.9 55.0 53.8 733 -83.4 :91 705.5 717.6 730,3 -143.6 Table 6,Allowable Stress Design-Component and Cladding(C&C)Pressures(PSF)to be Restated at Various Wind Speeds-Wind Exposure Category 0, Wind Speed(3- second gust) 100 105 110 115 12D 130 140 150 160 170 180 190 200 210 Height(ft) D D D D D D D D D D D D D D 0-15 -212 -23,4 -26,7 -28.1 -30.6 35.9 -41.6 -47.8 -64.4 -61A 58.8 -76.7 -85.0 -93.7 20 -22.3 -24.6 -27.0 -29.5 32.1 37.7 -43.7 50.1 57.0 -64.4 72.2 -80.4 -89,1 -982 25 -23.1 -25.5 -28.0 30.5 -33.3 -39.0 -45.3 52,0 -59.1 -66.8 -74.9 -83.4 92A -101.9 30 -23.9 -26A -29.0 31.6 34.5 -40.4 46.9 53,8 -61.3 -692 -77.5 -86.4 -953 -105.5 35 -24,5 -27.1 -29.7 32,5 35.3 -41.5 48.1 -552 -62.3 70.9 79.5 -88.6 -982 -108.3 40 -26.2 -27.7 30.5 33.3 -362 42.5 -49.5 56.6 -64.4 72.7 -81.5 -90.9 -100.7 -111.0 45 -25.7 -28.3 -31.1 -34.0 37.0 -43.4 50.3 57.8 -65,7 -742 -832 -923 -102.7 -113.3 50 -262 -26.9 -31.7 34.6 37.7 -44.3 -51.3 58.9 -61.1 753 -84.8 -94.6 -104.8 -115.5 55 -26,6 -29.3 32.2 352 38.3 -45.0 -522 59.9 -68.1 76.9 -86.2 -96.1 -106.4 -117A 60 -21.0 -29.8 -3 . .'3 . -38.9 --4"- --W-8 --b=9 - -97.6 - --Ti 9-2 100 37,0 X0.8 -44.7 48.9 532 -82.5 72.5 -832 -94.6 7106,8 -119.8 733.4 747.9 A63.0 Tables 4,5,and 6 are based on ASCE 7-10 and consistent with the 2015 IBC,20151RC and the 2017 Florida BuiTft Code. ee�prfe�ssa���®oo' 416E4 QGW�ry �®� a ���8j'mddd604f�8f 13 i RONALD 1.OGAVVA ASSOCIATES,INC: 16835 ALGONQUIN STREET 9443 HUNTINGTON BEACH,CA 92648 .714-297-2602 714-847-4595 FAX PROJECT:RIO-2553-15 JAMES HARDIE BUILDING PRODUCTS,INC. 1-888-542-7343 info@jameshardie.oom Summarybased on Report IC-1034-89 INo 11aa 1 75"long roofing nail blind nailed into wood studs): The adjusted fastener withdrawal design value,W,is calculated per NDS-2015- Specific DS-2015:Speci is gravity,G=0.42(use the specific gravity of SPF lumber instead of 0.43 for Hem Fir); Nail shank diameter,D=D.120"; Nail penetration depth for 1.75•nail installed on 511 6"fiber cement plank,P=1.438"; Calculated withdrawal design value,W=1380"G(512)`D=1380'(0.42)^2.5'0.120=18.9 Wain penetration; Adjusted withdrawal design value,W=CD'W'P=1.6`18.9.1.438=43.5 lb. The tested design fastener load with a factor of safety 3 applied is 44.8 pounds perfastener,which is larger than the NDS adjusted festanerwithdrawat design value of 43.5 pounds. Hence for calculation of allowable basic wind speed,tested fastener load of 43.5 pounds for a No.11 gauge 1.75 inch long roofing nag will be used. In Table 20 below,the fastener load is held constant at 43.5 Ibslfastener far each plank width,the allowable siding design load is bark calculated from the tested fastener design load. Siding design load Is equal to fastener design load divided by fastener tributary. Results in Table 2G are used to calculate allowable basic wind speed for the Number 11 gauge 1,75 Inch long roofing nall. Calculation for No.11 ga.1.25"long roofing nail blind nailed into wood studs: Report IC-1034-88(1.75"long 11ga.roofing nail)yielded a tested fastener load of 44.79 Iblfastener with the failure mode being fastener head pull through the fiber-cement Therefore we know that the fiber-cement fastened blind nailed with a roofing nail Is funded to 44.791b/lastener. Using the some timber as specified in Report IC-1034-88, but changing the nail length to a 1.25 inches long yields an adjusted fastener withdrawal design value of 28.4 pounds per fastener. Calculated withdrawal design value,W=18.9 IhfuL penetration; Nail penetration depth for 125"nail installed over 5116"fiber cement plank,P=0.938"; Adjusted withdrawal design value,W=CD*W*P=1,6.18.9'0.938=28.4161 fastener. In this case,the adjusted withdrawal design value is the contra;factor,since Its less than the tested design fastener load Siding design Wad is equal to fastener design load of 28A Ib/fastener drvided byfastener tributary. See Table 2H below,for the calculated siding design loads for each plank width. Results in Table 2H are used to calculate allowable wind speed for the Number 11 gauge 1.25 inch long roofing nag used in a blind nag application, i Summary based an Report 1020-68(6d common nail face nailed into wood studsl: The adjusted fastener withdrawal design value based on NDS-2015 is 39.2 pounds per fastener.The tested design fastener load with a factor of safety 3 applied Is 60.8 pounds per fastener. The NDS adjusted fastener withdrawal design value of 39.2 pounds is more conservative when compared against the tested fastener load. Hence for calculation of allowable basic wind speed,the siding design load for a 6d common nag face nailed will be calculated based on the NDS-2015 adjusted fastener withdrawal design value 39.2 IbsKastener, See Table 21 below for the calculated siding design loads for each plank width using a fid common. Results in Table 2l are used to calculate allowable basic wind speed for the 6d common nail,face nailed. Calculation for 8d common nail face nailed into wood studs: We would like to use the ultimate test values obtained in report 1020-88,to do this we propose substituting an 8d common nag for the tested 6d common nail.Doing this substitution resolves the disparity between the NDS and tested values on fasteners. Below are the rationale for substituting the 8d common for the 6d common nail used in testing report 1020-88 to achieve the stated ultimate test load of 199 psf,a design toad of 66.3 lost 1)Use the same timber as in the report,but change the nag to a larger 8d common nag(2.5"long x 0.131"shank diameter x 0.281'head diameter); 2)The 8d common yields an NDS adjusted.fastenerwithdrawal design value of 65.8 pounds per fastener Specific graft.6=0.42:Shank diameter,D=0.131";Net Penetration for a 2.5"nag through two layers of 6116'fiber cement=1.075"; Withdrawal design value,W=138D'G(512)•D-20.67lb8n penetration; Adjusted withdrawal design value,W=CD'W'P=1.6.20.67'1.875=62.0 lb. 3)The mode of failure for the 6d common nag(report 1020-88)is fastener withdrawal from timber. Since the 8d common nag has a larger bearing area under the fastener head than the 6d common,we can anticipate at least the same fastener pull through capacityfrom an Bd common nag: •6d common head bearing area(head diameter=D266 inches,shank diameter 0.113 inches)=0.0455 sq inches "ed common head bearing area(head diameter=1 281 Inches,shank diameter 0.131 inches)=0.0485 sq orches; 4)The NDS adjusted fastener wnlhdrawat design vaiue for the 8d common is 62.0 lb/fastener,this exceeds the tested fastener design load of 60.8 lbs/fastener(for a 6d common in report 1020-88),therefore we can use the ultimate failure pressure of 199 psf to tabulate a design pressure 66.3 psf with an 8d common nail(60.8 Ibslfastener),this will be used to calculate wind design For the 4 reasons above,the 8d common can be directly substituted for the 6d common used in report 1020.88.See Table 2.1 for the caladated siding design loads for each plank width. Results in Table 2.1 are used to calculate allowable basic wind speed for the 8d common nail face nailed Into wood studs. Summary based on Report 2149-07-10(C)(8d ring shank box nail face nailed into wood studsl: Nag withdrawal hdrawal design load was determined to be 30 @fin penetration,based on ESR-1539 Table 2,for 0.113"deformed shank nail with 0.50 wood specific gravity. Nag penetration depth for 2.375"long crag through two layers of 5116"fiber cement planks,P=1.75"; The adjusted fastener withdrawal design value W=Ca•W•P-1.6'30M.75=84.0 m. (p B P p f OG f1Wq The tested design fastener load with a factor of safely 3 applied Is 76.7 pounds per fastener,which is less than the adjusted fastener withdrawal design value off, pe�gla Hetq&fpt.•. o calculation of allowable basic wind speed,tested fastener load of 76.7 pounds will be used r In Table 2K below,the fastener load is held constant at 76.7lbsffastener for each plank width,the allowable siding design toad is back calculated from fie tented fas e i d Siding design load is equal to fastener design load divided by fastener tributary. Results in Table 2K are used to calculate allowable basic wind speed for ring sh ai ; S, nailed into wood studs. i e 6 i RONALD 1.OGAWA ASSOCIATES,INC. 16835 ALGONQUIN STREET 9443 HUNTINGTON BEACH,CK92649 714-292-2602 714.847-4595 FAX PROJECT:RIO-2553-15 JAMES HARDIE BUILDING PRODUCTS,INC. 1-888-542-7343 info@jameshardle.com Table 2G,Allowable Design Loads Based on Constant Fastener Load,No.11ga.Roofing nail 1314;'L,SPF Studs,fasteners concealed(blind nail) Check far results using 9.5 inch plank values from Report Number IC-1034-88. Design load=ultimate failure load/FOS=-146.6psf/3=-48.9 psf Effective tributary=((plank width exposed to weather X stud spacing)/144)=((825.125)X 16)1144=0.9167 sq.fL Fastener load-design load X tnbutary area=X18.9 X.9167=-44.79 pounds,which will be used for the calculation Adjusted fastenerwithdrawal load from NDS-2015=43.5 Iblfastener,in this case Its more conservative and will be used for the calculation Calculated aflowable design load=fastener load tested co an divided by area tributary for the condition to be calculated m ,o a om T HardlePlank Width =' a m ° inches r-r`�5 via waaa u , wa 5.25 16 0.4444 -97.88 -43.50 24 0.6667 -6525 6.25 16 0.6556 -78.30 -43.60 24 0.8333 -52.20 725 16 0.6667 -65.25 -43.50 24 1.0000 43.50 7.5 16 0.6944 -62.64 -43.50 24 1.0417 -41.76 8 16 0.7500 58.00 43.50 24 1.1260. 1 38.67 8.25 16 0.7778 55.93 -43.50 24 1.1667 37.29 9.25 16 0.8889 48.94 _ 43.50 24 1.3333 32.63 9.5 -149.8 18 0.9167 -47.45 -43.60 24 1.3750 -31.64 12 16 1.1944 1 36.42 -43.50 24 1.7917 -24.28 Table 2H,Allowable Design Loads Based on Constant Fastener Load,No.11ga.Roofing nail 1-114"1,SPF Studs,fasteners concealed(blind nail) The design load In this rase Is limited by both test result of report IG-1034.88 and Adjusted vkhdrawai load from NDS-2015 Siding design load In ties case is equal to the adjusted fastenerwdhdrawal des n load 30.1 ft"b tener)divided by fastener tributary area. M v m o Ti c HardlePlank Width a Ur m O1 y v m (inches) rn,-= w $ 30� QLLJin v�€ wdt�`� ma 6.25 16 0.4444 -63.90 -28A 24 0.6667 , -42.60 6.25 16 0.5555 -51.12 -28A 24 0.8333 34.08 7.26 16 0.6667 -42.60 -28A 24 1.0000 I -20AD 7.5 16 0.6944 -40.90 -28.4 24 1.0417 -27.26 6 16 0.7500 -37.87 -28.4 24 1.1250 -25.24 825 16 0.7778 -36.51 -28.4 24 1.1667 -24.34 9.25 16 0.8889 31.95 -28A 24 1.3333 -21.3D 9.5 18 0.9167 3039 -28A 24 1.3760 -20.65 12 16 1.1944 -23.78 -28.4 24 13917 -15.85 Table 21,Allowable Design Loads Based on Constant Fastener Load,6d common nail 2"L,SPF Studs,fasteners exposed(face nail) Check for results using 9.5 inch plank values from Report Number IC-1020.88. Design load=ultimate failure load/FOS=-199ps03=-66.3 psf Effective tributary=((plank width exposed to weather X stud spadng)1144)=((9.5-1.25)X 16)1144=0.9167 sq.0. Fastener load=design load X tributary area=-66.33 X 0.9167=-60.81 pounds Adjusted fastener withdrawal load from NDS-2015=392 Ib/fasterier,in this case 0's more conservative and YA be used for the calculation Calculated a0owable design load=ad usted fastener withdrawal load divided by area tributaryfor the condition to be calcufated �n m co W -Dos a»m Wim... HardiePlank Width ,,u t o m m a_x a N nChPS mUS 17 m= w` "+ �D� a° in` W ` � Ov 5.25 16 0.4444 -68.20 -39.20 24 0.6667 58.80 625 16 0.6556 -70.56 39.20 24 0.8333 -47.04-- 725 16 0.6607 58.80 -3920 24 1.0000 39.20 7.5 16 0.6944 1 56.45 39.20 24 1.0417 37.63 8 16 0.7500 52.27 -39.20 24 1.1250 34.84 p 1/OII�J 0o/d®e�oo P..25 16 0.7778 -50.40 -3920 24 1.1667 -33.60 /8 s 9.5 -199 16 0.9167 -42.78 39.20 24 1.9760 g i.29.40 x(11 �•OGA fNq f 12 16 1.1944 32.82 -39.20 24 1.7917 -21.88 ti o . 24 2 ` ` STATE 4E SION. �6 e'R'�BiFOd'9FBB1 L&f 9 I RONALD 1.OGAWA ASSOCIATES,INC. 16835 ALGOIIQUiN STREET 31443 HUNTINGTON BEACH,CA 92649 714-292-2602 OppBBBBBAooao 714-847-4595 FAX 00000 ®6+/� Op000 PROJECT.RIO-2683-17 y060 0S.\. JAMES HARDIE BUILDING PRODUCTS,INC. yy '7 1-B88-542-7343 •••-A� info@iameshardie.comX0 o 121 a 20f5 IBC.2017FBC 2011BC,2017FBC a g Ultimateble,Nominal Des gn Wrid,Spe , D I iggnWind,Speed, id¢, asdSs. m fl �1 (3-second gust mph) 3-second gust mph) oe�s ........ • •••` yy� AppIcabloin in o methods spedfied in[2015I8C, Appli specified ine 1F.xceptions 1 ®oma®�®�ed'06'BBi 0 2017 as d Section rmne through 3"of 12015 IBC, 1609.1.1.Figures determined b 2017 FBC)Section ,�- ' Figures 16033(1), 1609 1609.3(2),or 1609.3(3) .1.1. Coefficients used in Table calculations forV,rt Wind osure category Wind exposure category Siding V. Product Stud Building Allmahle Width Fastener Fastener Frame Product Thidmcss (inches) Type Spacing Type 9peong Hetgtrcs" B C D B C O Loa(inches)(inches) (inches) (feel) (PSF) Exp B Exp C Exp D Vn Kd I GCy G 0-15 213 193 175 165 149 1 136 -65.3 0.7 0.85 1 1A3 hs6o 1 0.85 -1.4 0.18 20 213 198 171 165 145 133 -65.3 0.7 0.9 1.08 1 0.85 -1.4 0.18 25 213 184 168 165 142 130 -65.3 0.7 0.94 1.12 1 0.85 -1A 0.18 No.11 ga. 30 213 180 105 .165 139 128 .65.3 0.7 0.88 1.16 1 0.85 71.4 0.18 X 1514" 2X4 35 208 177 163 161 137 126 -65.3 0.73 1.01 1.19 1 0.85 -iA 0.16 HardlePlank 5116 7.26 long Blind nail Wood 16 40 204 174 161 158 135 125 -65.3 0.76 1.04 1.22 1 0.85 -1.4 0.16 Roofing SPF a 45 201 172 159 156 134 124 -65.3 0.785 1.0% 1.245 1 0.85 -1.4 0.16 nag 50 198 170 158 153 132 122 85.3 0.81 1.09 127 1 0.85 -1.4 0.18 55 195 169 157 151 131 121 -65.3 0.83 1.11 129 77E .1.4 0.18 60 193 167 155 149 130 120 -65.3 0.85 1.13 1.1.31 1 0.85 -1A 0.18 100 160 142 133 124 110 103 -65.3 0.99 1.261 1.43 "0 1 0.851-1.8 0.18 0-15 208 189 172 161 148 133 -626 0.7 0.85 1 1.03 hs60 1 0.85 -1.4 0.111 20 208 184 168 .161 142 130 •826 0.7 0.9 1.08 1 0 S -1A 0:18 25 208 180 165 161 139 128 -62.6 0.7 0.94 1.12 1 0.85 -1.4 0.18 No.11 ga. 30 20B 176 162 .'161 135 125 826 117 0198 1.16 1 0.85 -1.4 0.18 X 1.3/4" 2X4 35 204 173 160 158 134 124 -62.6 0.73 1.01 1.19 1 0.85 -1.4 1118 HardlePlank 5116 7.5 long Blind nail Wood 16 40 200 171 158 : 155 132 122 -826 0.76 1.04 122 1 las -1A ala Roofing SPF s 45 197 169 156 152 131 121 -MS 0.785 1.065 1.245 7'5:a-5 -1.11 0.18 nag 50 194 167 155 150 129 120 •626 0.81 1.09 127 1 0.85 -1.4 0.18 55 191 165 153 148 128 119 X2.6 0.83 1.11 129 1110.851-1.4 0.18 60 189 164 152 146 127 118 -626 0.85 1.13 1 1.31 1 10.85 1 AA 0.18 100 156- 139 130 121 107 101 -6'L.6 0.99 1261 1.43 h>W 1 0.85 -1.8 0.18 0-15 200 182 165 155 141 128 -58.0 0.7 0.85 1 1.03 h9s0 1 0.85 -1.4 0.18 20 200 177 161 155 137 125 -58.0 0.7 0.9 1 1.08 1 1185 -1A 0.111 25 200 173 158 155 134 123 -58.0 0.7 0.94 1.12 1 o_85 -1A 0.18 No.11 ga. 30 200 169 156 155 131 121 -58.0 0.7 0.98 1.16 1 0.85 -1A 0.18 X 1.314" 2X4 35 196 167 154 152 129 119 -58.0 0.73 1.01 1.19 1 0.85 AA 0.18 HardiePlank 5116 8 long Blind nail Wood 16 40 192 164 152 149 127 118 S8.0 0.76 1.04 1.22 1 0.85 -1A 0.18 Roofing SPF a 45 189 162 150 147 126 116 -58.0 0.795 1.055 1.245 1 0:85 -1.4 0.18 nail 50 186 1161 149 144 124 115 58.0 0.81 1.09 1.27 1 0.85 AA 0.18 55 184 159 148 143 123 114 58.0 0.83 1.11 129 1 O.SS -1A 0.18 60 182 158 147 141 122 113 -58.0 0.85 1.13 1.31 1 0.85 AA 0.18 100 151 133 125 117 103 97 58.o 0.99 128 1.43 hv60 110251-1.8 0.18 0.15 197 178 162 152 138 126 -55.9 0.7 0.85 1.03 h560 1 0.65 -1.4 0.16 20 197 174 158 152 134 123 55.9 0.7 119 1.08 1 0.85 -1A 0.18 25 197 170 155 152 132 120 55.9 0.7 0.94 1.12 1 0.85 -1.4 0.18 No.11 ga. 30 197 166 153 152 129 118 -55.9 0.7 119a 1.18 1 0.65 -1.4 0.18 X 1-/4" 2X4 35 193 164 151 . 149 127 117 -553 0.73 1.01 1.19 1 0.85 -1.4 0.18 HardlePlank 5116 8.25 long Blind nail Wood 16 40 189 161 149 146 125 115 -55.9 1176 1.04 122 1 0.85 AA 0.18 Roofing SPF a 45 186 160 148 144 124 114 55.9 0.785 1.085 1245 1 0.65 -1.4 0.18 nag 50 183 158 146 142 122 113 -55.9 0.81 1.09 127 1 0.85 -1.4 0.18 55 181 156 145, 140 121 112 -55.9 0.83 1.11 129 1 0.85 -1A 1118 60 179 155 144 138 120 111 -55.9 0.65 1.13 1.31 1 0.85 -1.4 0.18 100 148. 131 123 114 101 95 55.9 0.99 126 1.43 h>60 110.851-1.8 0.18 0-15 1 184 167 152 143 129 118 48.9 1 0.7 0.85 1 1.03 h:960 1 0.85 -1.4 0.18 20 184 1 162 148 1 143 126 115 -48.9 0.7 0.8 1.08 1 .0.85 -1.4 0.18 25 184 1 159 145 1 143 123 113 1 -48.9 0.7 0.94 1.12 1 :0.85 -1.4 0.18 No.11 ga. 30 184 156 143 143 120 111 1 49.9 117 0.98 1.16 1 0.85 -1.4 1118 X 1.3:4" 2X4 35 180 153 141 140 119 109 -48.9 0.75 1.01 1.19 1 am -1.4 0.18 HardlePlank 5116 9.25 long Blind nag Wood 16 40 177 151 139 137 117 108 -08.9 0.76 1.04 122 1 '0.a5 -1.4 1118 Roofing SPF a 45 174 149 138' 135 116 107 48.9 4785 1.095 1.249 1 0.85 -1.4�(l nag 50 171 147 137 133 114 106 48.9 0.81 1.09 1.27 1 0.85 -1A55 169 146 136 13t 113 105 48.9 0.83 1.11 129 1 0.85 -1.460 167 145 135 129 112 104 411.9 0,85 1.13 131 1 (IM -1.4 100 138 123 115 707 95 89 48.9 0.99 126 1.43 n>so 1 0.15 -1.8 0.18 18