Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutStructural CalculationsP.L0
AA 0003068a� E
N IB0001031 r;
AROHITEOTS ,* i
INTERIORS
4
flPLANNERS x
8628 BRIDLE PATH COURT t�
SUITE 208
DAVIE, FLORIDA 33328 F
TEL (305) 439-3346 �S
af@faMarchitects com r
'tom �"'+'Y P-," s., ^� �'-¢ �.3:•r
Date: March 12, 2020
Re: Structural calculations for:
4710 Midway Rd.
Fort Pierce, FLORIDA
Design Loads:
Roof L.L. = 20 psf
Roof D.L. =15 psf
Floor L.L. =40 psf
Floor D.L. =25 psf
Wind Loads as per ASCE 7-2010
Florida Building Code 2017, 61 edition Residential
5
Asghar J. Fathi, R.A.
AR0016049
Page 1 of 7
MecaWind v2340
Software Developer.: Meca Enterprises Inc., www.meca.biz, Copyright U 2018
Calculations Prepared by:
_ Date: Mar 04, 2020 Project #: 071519
Designer: FATHI Location: 4710 MIDWAY RD
Description:
DEB YUSUF RES
FileLocation : C:\Projects\wind loads\DEB.wnd
Basic Wind Parameters
Wind Load Standard = ASCE 7-10
Exposure Category = C
Wind Design Speed = 150.0 mph
_ II
Risk Category = L Shaped
Structure Type = Building
Building Type
General Wind settings = True
= Include ASD Load Factor of 0.6 in Pressures
Incl_LF
= Rigid
DynType = Dynamic Type of Structure
= 1.000 Hz
1)
NF = Natural Frequency of Structure (Mode
= 0.000 ft
Elevation) above Sea Level
Alt = Altitude (Ground
= 0000 ft
Bdist = Base Elevation of Structure
= True
SDB = Simple Diaphragm Building
= False
Reacs = Show the Base Reactions in the output = Ch 27 Pt 1
MWFRSType = MWFRS Method Selected
Topographic Factor per Fig 26.8-1
= None
Topo = Topographic Feature
= 1.000
Kzt = Topographic Factor
Building Inputs
RoofType: Building Roof Type = L Shaped
L1 Width of End 1 - 16.000 ft
Width Along Side = 56.000 ft
L2 : Length Along Back = 40.000 ft
= 16.000 ft
L3
EHt Eave Height = 10.000 ft
L4 : Width End 2
RE Roof Entry Method Ridge
RHt : Ridge Height = 10.000 ft
Gabled
Endl : Roof Type on End 1 = Gabled
End2 : End2 Method =
OHType : Overhang Type None
Par : Is there a Parapet - False
Exposure Constants per Table 26.9-1:
Const from Table 26.9-1= ft
Alpha: Const from Table 26.9-1= 9.500
1.0.000
Const from Table 26.9-1= 0
At: Const from Table 26.9-1= 0.105
t:
B :
Const from Table 26.9-1= 0. 650
Am: Const from Table 26.9-1= 0.154
Bm:
Const from Table 26.9-1= 0.200
C: const from Table 26.9-1= 0.200
Epa:
Overhang Inputs:
Std = Overhangs on all sides are the same
OHType = Type of Roof Wall Intersections
Main Wind Force Resisting System 0*1&R5) Calculations per Ch 27 Pert 1:
Zh = Mean Roof Height for Kh: h + Base Dist
Kh = Since Zht15 ft [4.572 m] --> 2.01 * (15/zg)^(2/Alpha)
Kzt = Topographic Factor is 1 since no Topographic feature specified
Kd = Wind Directionality Factor per Table 26.6-1
GCPi = Ref Table 26.11-1 for Enclosed Building
RA = Roof Area
LF = Load Factor based upon ASD Design
qh = (0.00256 * Kh * Kzt * Kd * V^2) * LF
qin = For Negative Internal Pressure of Enclosed Building use qh*LF
qip = For Positive Internal Pressure of Enclosed Building use qh*LF
Gust Factor Calculation:
Gust Factor Category I Rigid Structures - Simplified Method
G1 = For Rigid Structures (Nat. Freq.>l Hz) use 0.85
Gust Factor Category II Rigid Structures - Complete Analysis
Zm = 0.6 * Ht
Izm = Cc * (33 / Zm) 0.167
Lzm = L * (Zm / 33) ^ Epsilon
Q = (1 / (1 + 0.63 * ((B + Ht) / Lzm)^0.63))^0.5
G2 = 0.925*((1+1.7*lzm*3.4*Q)/(1+1.7*3.4*lzm))
= True
= None
= 10.000 ft
= 0.849
= 1.000
= 0.85
+/-0.18
1280.00 sq ft
0.60
24.94 psf
= 24.94 psf
= 24.94 psf
= 0.85
= 15.000 ft
= 0.228
= 427.057
= 0.972
= 0.910 a
1
j=l-. ///I". R T.-ro i„rAr/ A,nnnara/R oaminLF/MecaWind/SelectedAnalysis.html
3/4/2020
Page 2 of 7
Gust Factor
Used in Analysis =
0.850
G
= Lessor Of G1 Or G2
bwms Wind
Direction A (Ref Fig 27.4-1)
= 10.000
ft
h
= Mean Roof Height Of Building
= 10.000
ft
RHt
= Ridge Height Of Roof
= Horizontal Dimension Of Building Normal To Wind Direction
= 56.000
ft
B
L
= Horizontal Dimension Of building Parallel To Wind Direction
= 40.000
ft
L/B
= Ratio Of L/B used For Cp determination
= 0.714
= 0.250
h/L
= Ratio Of h/L used For Cp determination
= 0.0 Deg
Slope
Roof_1
= Slope of Roof
= Roof (<10 Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft)
= -0.18,
-0.9
Roof_1
= Roof (Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft)
10.000 ft)
= -0.18,
= -0.18,
-0.9
=0.9
Roof_2
= Roof (<10 Along Ridge) Coeff (h/2 to h) (8.000 ft to
2h) (10.000 ft to 20.000 ft)
= -0.18,
-0.5
Roof_2
= Roof (Along Ridge) Coeff (h to
= Roof (<10 Along Ridge) Coeff (h to 2h) (10.000 ft to 16.000 ft)
= -0.18,
-0.5
Roof-3
Roof 3
= Roof (Along Ridge) Coeff (>2h) (>20.000 ft)
= -0.18,
-0.3
Cp WW
= Windward Wall Coefficient (All L/B Values)
= 0.80
-0.50
Cp_LW
= Leward Wall Coefficient Using L/B
= -0.70
Cp_SW
= Side Wall Coefficient (All L/B values)
= Parapet Combined Net Pressure Coefficient (Windward Parapet)
_
GCpn_WW
GCpn_LW
= Parapet Combined Net Pressure Coefficient (Leeward Parapet)
-1.00
wall Wind Pressures based On Positive Internal Pressure (+GCPi) - Direction A
All wind pressures include a load factor of 0.6
Windward
Leeward
Side Total Minimum
Elev 4z
Rzt
GCPi Press
Press
Press Press Pressure*
ft psf
psf psf
psf
psf psf psf
10.00 0.949 1.000 24.941
0.18 12.47
-15.09
1 -19.33 27.56 9.60
Wall wind Pressures based on Negative Internal Pressure (-GCPi) - Direction A
All wind pressures include a load factor of 0.6
windward
Leeward Side Total
Minimum
Elev Kzt
qz GCPi
Press
Press Press Press
Pressure*
ft
psf psf
psf
psf psf psf
psf
10.00 0.849 1.000
24.94 -0.18
21.45
-6.11 -10.35 27.56
9.60
Notes Wall Pressures: = Topographical Factor
KZ = Velocity Press Coeff Kzt GCPi = Internal Press Coefficient
q
z = 0.00256*Kz*Kzt*KdKd*V^2
Side = qh * G * Cp_SW - qip * +GCPi Windward = qz * G * Cp WW - qip * +GCPi
Leeward = qh * G * Cp_LW - qip * +GCPi Total = Windward Press - Leeward Press
* Minimum Pressure: Para 27.4.7 no less than 9.60 psf (Incl LF) applied to Walls
Windward: Walls 1 and 5 Leeward: Wall 3 Side: alles Acting AWAY from Surface
+ Pressures Acting TOWARD Surface -
Roof Wind Pressures for Positive 6 Negative Internal Pressure (+/- GCPi) - Direction A
All wind pressures include a load factor of 0.6
start
End
Pressure •
Pressure
Pressure Pressure
Roof Var
Dist
Dist
Cp min
Cpax m
GCPi
Pn min*
Pp min*
Pn max E'P
psf
ft
ft
psf
psf
psf
Roof
0.000
5.000
-0.180
-0.900
0_.180
0.67
_ -8.30
_-14.59 _23.57
_1_(11)
Roof_1 (8,9)
0.000
5.000
~-0.180
-0.900
0.180
_ 0.67
_ -8.30
-14.59L-23.57
^
Roof_2 (10)
B.000
10.000
-0.180
.....
0.180
0.67
-8.30
-14.59-23.57
10.000
20.000
-0.180
_-_0.500
0.180
0.67
-8.30
�- -8.30
Roof_2 (8,9j
-6_.11-15.09
-6.11-15.09
(10)
_ 10.000
16.000
-0.180
-0.500
0.180
0.67
Roof_3
Roof 3 (8,9)
20.000
32.000
-0.180
-0.300
0.180
0.67
-8.30
-1.87-10.85
C%
rt - . ! J i ri- ff T... -- /.,--../ A „�n.tQ nz na-mino,/MecaWind/SelectedAnalysis.html 3/4/2020
Page 4 of 7
Roof Var
Dist Dist
ft ft
Cp min
Cp max
GCPi
Pn min*
psf
Pp min*
psf
P _�
psf
� P
psf
1
0.000 5.000
-0.180
-0.900 0.180
_ 0.67
_ -8.30
`-14.59
-23.57
- -
Hof
1
(8)
(10,11)
0.006 5.000
-0.180
-0.900
---
0---
- -8.30
- --1-
_- -- - 57
>of
8.000 10.000
-0.180
-0 900
---
0.180
0.67
-8.30
-14.59
�-2 _ 57
)of 2
(9)
8.000 10.000
-0.180
-0.900
0.180
0.67
-8.30
-14.59
-23' 57
)of 2
---
(11,11)
0.. -
10.000 16.000
_-. _.__-
-0.180
---- _._.
-0.500
__. - .. _.
0.180
_.
0.67
-8.30
-6.11
-1 . 09
)of-3
3
10.000 20.000
-0.180
•--5--0
-0.50..67
-
-0--_. 180
-
0
-8.30
-6_11
-15.0S
3of
4
(10,11)
(11,11) 10.000 20.000
-0.180
-0.500
0.180
0.67
�0.67
-8.30
~-
_-6.11
,_ -15. 05
Hof
Hof 5
(10,11)
_ 20.000 56.000-0.180
-0.300
-0.180
_ -
-8.30-1.87
---- _.__ . --
-10.8:
-10.8.
Dof 6
-(11,11)
20.000 56.000
--0.180
-0.300
0.180
0.67
-8.30
-1.87
Notes
Roof Pressures:
= Start Dist from Windward Edge End Dist = End Dist from
Windward Edge
Start Dist
= Largest Coefficient Magnitude Cp Min = Smallest Coefficient Magnitude
Cp Max
Pp_max _h*G*C max - gip*(+GCPi) Pn_max = qh*G*Cp max -
-
qin*(-GCpi)
Pp min* = qh*G*Cp min - qip*(+GCPi) Pn_min* = qh*G*Cp min
Y = Dir Perpendcular to Ridge
qin*(-GCPi)
Z = Vertical
OH =
Overhang X = Dir along Ridge
due to Cp Min can become critical when wind is combined
* The
smaller uplift pressures
roof live load pr snow load; load combinations are given in ASCE 7
with
+ Pressures
Acting TOWARD Surface - Pressures Acting AWAY from Surface
NOW Wind
Direction C (Ref Fig 27.4-1)
= 10.000 ft
h
= Mean Roof Height Of Building
= 10.000 ft
RHt
= Ridge Height Of Roof
= Horizontal Dimension Of Building Normal To Wind Direction
= 56.000 ft
B
L
= Horizontal Dimension Of building Parallel To Wind Direction
= 00.70 ft
14
L/B
= Ratio Of L/B used For Cp determination
= 0.250
h/L
= Ratio Of h/L used For Cp determination
= 0.0 Deg
Slope
= Slope of Roof
= Roof (<10 Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft)
_ -0.18, -0.9
-0.9
Roof_1
Roof-1
= Roof (Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft)
h) (8.000 ft to 10.000
_ -0.18,
ft)
Roof_2
= Roof (<10 Along Ridge) Coeff (h/2 to
2h) (10.000 ft to 20.000 ft)
_ -0.18, -0.5
Roof_2
= Roof (Along Ridge) Coeff (h to
Along Ridge) Coeff (h to 2h) (10.000 ft to 16.000
ft) =
Roof 3
= Roof (<10
Roof (Along Ridge) Coeff (>2h) (>20.000 ft)
-0.16, -0.3
Roof-_3
=
Cp WW
= Windward Wall Coefficient (All L/B Values)
= 0.80
= -0.50
Cp-.LW
= Leward Wall Coefficient Using L/B
= -0.70
Cp_SW
= Side Wall Coefficient (All L/B values)
Coefficient (Windward Parapet)
= 1.50
GCpn WW
= Parapet Combined Net Pressure
Combined Net Pressure Coefficient (Leeward Parapet)
= -1.00
GCpn_LW
= Parapet
Wall Wind Pressures based On Positive Internal Pressure (+GCPi) - Direction C
All wind pressures include a load factor of 0.6
Windward
Leeward
Side Total Minimum
Elev KZt qQ
GCPi Press
press
Press Press Pressure*
ft psf
psf psf
psf
psf psf psf
10.00 0,849 1.000 24.94
0.18 12.47
-15.09
-19.33 27.56 9.6C
wall Wind Pressures based on Negative Internal Pressure (-GCPi) - Direction C
All Hind pressures include a load factor of 0.6
Windward
Leeward
Side Total Minimum
Elev KZ KZt qz
GCPi press
Press
Press Press Pressure*
ft psf
psf psf
psf
psf psf psf
10.00 0.849 1.000 24.94
-0.18 21.45
-6.11
-10.35 27.56 9.6(
Notes Wall Pressures:
Kz = velocity Press Exp Coeff Kzt = Topographical Factor
qz = 0.00256*Kz*Kzt*Kd*V^2 GCPi = Internal Press Coefficient
0
r.I--//Ir•ItTe areA,car/Anne)ata/Roaming/MecaWind/SelectedAnalysis.html 3/4/2020
Page 5 of 7
Side = qh * G * Cp_SW - qip * +GCPi Windward = qz * G * CpWW - qip * +GCPi
Leeward = qh * G * Cp_LW - qip * +GCPi Total = Windward Press - Leeward Press
* Minimum Pressure: Para 27.4.7 no less than 9.60 psf (Incl LF) applied to Walls
Windward: Wall 3 Leeward: Wall 1 & 5 Side: Walls 2, 4 & 6
+ Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface
Roof wind Pressures for Positive & Negative Internal Pressure (+/- GCPi) - Direction C
A11 wind pressures include a load factor of 0.6
Start
End
Pressure
Pressure
Pressure
Pressure
Roof Var
Dist
Dist Cp min
Cp_ max GC
Pn min*
PP min*
Pn max
PP
psf
ft
ft
psf
psf
pag
Roof 1 (10)
0.000
5.000 -0.180
------ 0.180
0.67
-8.30
-14.59
-23.57
Roof(8,9)
0.000
5.000 -0.180
-0.900 0.180
0.67
-8.30
__ -14.59
--23. -
_1
Roof 2 (11)
8.000
10.000 -0.180
-0.900 0.180
0.67
-8.30
--_-19.59
_ -23.57
--
Roof(8,9)
�.
10.000
20.000 -0.180
--
-0.500 0.180
0_67
-_ -8.30
8.30
�- -6_11
-6.11
_ �_-- -._..
-15.0
_2
Roof (11)
- - --
10.000
16.000 -4.180
-0.500 0.180
0.67
-
-
____Jo.
-10.85
_3
Roof 3 (8,9)
-20.000
40.000 _-0.180-8.30
-1.87
Notes Roof Pressures:
Start Dist = Start Dist from Windward Edge End Dist = End Dist from Windward Edge
Cp Max = Largest Coefficient Magnitude Cp Min = Smallest Coefficient Magnitude
p max = qh*G*Cp max - qip*(+GCPi) Pn_max = qh*G*Cp max - gin*(-GCpi)
Pp min* = qh*G*Cp min - qip*(GCPi)
p- + Pn_min* = qh*G*Cp min - qinF(-GCPi)
OH = Overhang X = Dir along Ridge Y = Dir Petpendcular to Ridge Z = Vertical
* The smaller uplift pressures due to Cp Min can become critical when wind is combined
with roof live load or snow load; load combinations are given in ASCE 7
+ Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface
xwFRS Wind Direction D (Ref Fig 27.4-1)
h = Mean Roof Height Of Building
RHt = Ridge Height Of Roof
g = Horizontal Dimension Of Building Normal To Wind Direction
f building Parallel To Wind Direction
L = Horizontal Dimension O
L/B = Ratio Of L/B used For Cp determination
h/L = Ratio Of h/L used For Cp determination
Slope = Slope of Roof
1 = Overhang (Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft)
OH
OHI = Overhang (Along Ridge) Coeff (h to 2h) (10.000 ft to 20.000 ft)
OH = Overhang (Along Ridge) Coeff (>2h) (>20.000 ft)
OH__Bot = Overhang Bottom
Roof = Roof (<10 Along Ridge) Coeff (>2h) (>40.000 ft)
Roof = Roof (Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft)
Roof_2 = Roof (Along Ridge) Coeff (h to 2h) (10.000 ft to 20.000 ft)
Roof 3 = Roof (Along Ridge) Coeff (>2h) (>20.000 ft)
= 10.000 ft
= 10.000 ft
= 40.000 ft
= 56.000 ft
= 1.400
= 0.179
= 0.0 Deg
_ -0.18, -0.9
_ -0.18, -0.5
_ -0.18, -0.3
= 0.8, 0.8
-0.18, -0.3
-0.18, -0.9
_ -0.18, -0.5
_ -0.18, -0.3
= 0.80
Cp WW = Windward Wall Coefficient (All L/B Values) = -0.42
Cp_LW = Leward Wall Coefficient Using L/B = -0.70
Cp_5W = Side Wall Coefficient (All L/B values) = 1.50
GCpn WW = Parapet Combined Net Pressure Coefficient (windward Parapet) _ _1.00
GCpn_LW = Parapet Combined Net Pressure Coefficient (Leeward Parapet}
Wall Wind Pressures based On Positive Internal Pressure (+GCpi) - Direction D
All mind pressures include a load factor of 0.6
windward
Leeward Side Total Minimum
Elev
NZ
Kzt
qZ
GCpi
Press
Press Press Press Pressure*
ft
psf
psf
psg
psf psf psf psf
10.00
0.849
1.000
24.94
0.18
12.47
-13.39 -19.33 25.86 9.60
Wall Wind Pressures based on Negative Internal Pressure (-GCPi) - Direction D
All wind pressures include a load factor of 0.6
441-111P-RTaAre/naPr/Annr)ata/Roami i&MecaWind/SelectedAnalysis.html
3/4/2020
Page 6 of 7
ft I I p I p I Windward I Leeward Side I Total I ressur
Ka Kzt z GCPi Press Press Press Press P®sears*
E
of sf psf psf psf psf psf
10.00 0.849 1.000 24.94 -0.18 21.45 -4.41 -10.35 5.86 9.60
Notes Wall Pressures:
Kz = Velocity Press Exp Coeff Kzt = Topographical Factor
qz = 0.00256*Kz*Kzt*Kd*V^2 GCPi = Internal Press Coefficient
Side = qh * G * cp_SW - qip * +GCPi Windward = qz * G * Cp WW - qip * +GCPi
Leeward = qh * G * Cp-LW - qip * +GCPi Total = Windward Press - Leeward Press
* Minimum Pressure: Para 27.4.7 no less than 9.60 psf (Incl LF) applied to Walls
Windward: Walls 4, 5 and 6 Leeward: Wall 2 Side: Walls 1 & 3
+ Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface
Roof Wind Pressures for Positive & Negative Internal Pressure (+/- GCPi) - Direction D
All wind pressures include a load factor of 0.6
Roof Var
Start
Dist
£t
End
Dist
ft
Cp min
snax GCPi
CP_
Pressure
Pn min*
psf
Pressure
Pp snip*
psf
Pressure Pressure
Pn max Pp
psf psf
OH(10,11)
0.000
5.000
-0.180
-0.900 0.000
-3.82
-3.82
-19.08 -19.08
_1
OH_2 (10,11)
16.006
20.000
-0.180
-0.500 0.000
-3.82
^-3.82
-3.82
-
-10.60 - _ -10.60
OR 3 (10,11) a
20.000
56.000
-0.180
-0.300 0.000
_ _
-3.82
r_- _
-6_.36
16^96
N/A
0.800
0.800 0.000
16.96
16.96
� ~-8.30
16.96
�M,-1.87
Roof (8,9)
48.000
-0.300 0.180
0.67
-10.85
40.000
Roof l (10,11)
0.000
5.000
_-0.180
-0.180
^ -0.900 0.180
0.67
-8.30
-14.59 _- 23.57
09
Roof_2-(10,11)
10.000
20.000
-0,180
-0.500 0.180
0.67
-T
-8.30
��--8.30
-6.11 -- --
- - Y ��-10.85
Roof 3 (10,11)
20.000
56.000
-0.180
-0.300 0.180
0-67
Notes Roof Pressures:
Start Dist = Start Dist from Windward Edge End Dist = End Dist from Windward Edge
nt Magnitude Cp _Min = Smallest Coefficient Magnitude
CpMax = Largest CoefficiePnmx = qh*G*Cpmax - qin*(-GCpi)
P -max* = qh*G*Cmax - qip*(+GCPi) = qh*G*Cp min - qin(-GCPi)
Ppmin= qh*G*Cpmin - qip*(+GCPi) Pn min*
OH = Overhang X = Dir along Ridge Y = Dir Perpendcular to Ridge Z = Vertical
* The smaller uplift pressures due -to Cp Min can become critical when wind is combined
with roof live load or snow load; load combinations are given in ASCE 7
+ Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface
Components and Cladding (c&c) calculations per Ch 30 Part 1: (End 1) = 10.000 ft
Zh = Mean Roof Height for Kh: h + Base -Dist Kh = Since Zh<15 ft [4.572 m] --> 2.01 * ( [15 ft or 4.572 m] / zg)^ (2/Alpha)= 0.849
Kzt = Topographic Factor is 1 since no Topographic feature specified = 11.0B00
Kd = Wind Directionality Factor per Table 26.6-1 0.= +/-0.18
GCPi = Ref Table 26.11-1 for Enclosed Building 6.0
LF = Load Factor based upon ASD Design = = 094 psf
qh = (0.00256 * Kh * Kzt * Kd * V^2) * LF = 24.000 ft
LHD = Least Horizontal Dimension: Min(B, L) = 4.000 ft
a1 = Min(0.1 * LHD, 0.4 * h = 4.000 ft
a = Max(al, 0.04 * LHD, 3 ft [0.9 m]) = 0,250
h/B = Ratio of mean roof height to least hor dim: h / B
wind Pressures for c&c Ch 30 Pt 1 (End 1)
All wind pressures include a load factor of 0.6
Description
width
Span
Area
1/3
p P
Ref GCp GCP Max biro
Min
ft
Zone
Pt
ft
aq ft
Rule
Fig Max psf psf
4.000
4.000
16.00
No
30.4-1 0.868 -0.958 26.12 -28.37
A
4
15.00
No
30.4-1 0.872 -1.204 26.23 -39.51
3.000
0.000
_ T9.00
~
30.4-1 0.900 26.93 -35.91
5
3.000
3.000
^21.33
No
Yes
_1.260
- 30.4-1 0.848 -0.938 25.63 -27.87
8.000
No
�.- .
30.4-1 0.900 -1 26.93 91
E
5
2.000
4.000
8.00
,260
r,«r•.RT..o,.n Amnnntn1RoFiming/MccaWind/SelectedAnalysis.hhnl 3/4/2020
Page 7 of 7
11 AND 2 1 5 1 6.0001 6.6001 39.601 No 130.4-110.8051-1.070124.561-31.17I
Area = Span Length x Effective Width
1/3 Rule = Effective width need not be less than 1/3 of the span length
GCp = External Pressure Coefficients taken from Figures 30.4-1 through 30.4-7
p = Wind Pressure: qh*(GCp - GCpi) [Eqn 30.4-13*
*Per Para 30.2.2 the Minimum Pressure for C&C is 9.60 psf [0.460 kPa] {Includes LF)
Since Roof Slope <= 10 Deg, the GCp value is reduced by 10%
D
filp-H/C.-ATcerghLSer/AvnData/Roaming/MecaWind/SelectedAnalysis.html 3/4/2020
-�77P,�V7"AL e;*k'L
SrQL, M0,,4-� ,bluer—r�G�'
T ips - Mlp c
z
2 �o (1,57� o r7/ g�7 5 .-pa
xeO)v Q •37 �h
419
.. a
lZ- . k/•
v��A7-r o
7V Aor%w'T
C
35) 4- (-7)
v�
12 Gr�c. F70 .
2 ! n-,
70 4�W/P7,
OA f
/ 90p to,
� 9!5dP �
22�,
1.90
?7
STRUCTURAL TUBING
Square
Dimensions and properties
DIMENSIONS
PROPERTIES°"
Nominal*
Weight
Size
Wall Thickness
per Foot
Area
I
S
r
In.
In.
Lb.
In.2
Ina
In 3
In.
16 x 16
.5000
'/2
103.30
30.4
1200
150
6.29
.3750
%
78.52
23.1
93I
116
6.35
.3125
5/16
65.87
19.4
789
98.6
6.38
n;
14 x 14
.5000
1/2
89.68
26.4
791
113
5.48
.3750
%
68.31
20.1
615
87.9
5.54
.3125
%6
57.36
16.9
522
74.6
5.57
12 x 12
.5000
1/z
76.07
22.4
485
80.9
4.66
.3750
%
58.10
17.1
380
63.4
4.72
.3125
T/16
48.86
14.4
324
54-.0
4.75
.2500
'Aa
39.43
11.6
265
44.1
4.78
10 x 10
.6250
%
76.33
22.4
321
64.2
3.78
.5000
1/2
62.46
18.4
271
54.2
3.84
3/6
47.90
14.1
214
42.9
3.90
.3750
.3125
%6
40.35
11.9
183
36.7
3.93
.2500
'/a
32.63
; 9.59
151
30.1
3.96 ;.
8 x 8
.6250
%
59.32
17.4
153
38.3
2.96 'k i
.5000
1/2
48.85
14.4
131
32.9
3.03
3/8
37.69
11.1
106
26.4
3.09 t€
.3750
.3125
5h6
31.84
9.36
90.9
22.7
3.12
.2500
1/4
25.82
7.59
75.1
18.8
3.15
.1875
3/16
19.63
5.77
58.2
14.6
3.18
7 x 7
.5000
1/2
42.05
12.4
84.6
24.2
2.62
.3750
%
32.58
9.58
68.7
19.6
2.68
27.59
8.11
59.5
17.0
2.71
1/4
22.42
6.59
49.4
14.1
2.74
.2500
.1875
3/16
17.08
5.02
38.5
11.0
2.77 "
r3
•
z
" Outside dimensions across flat sides.
Properties are based upon a nominal outside corner radius equal to two times the
wall thickness. A'
STRUCTURAL TUBING r -7-�
Square
Dimensions and properties LJ
DIMENSIONS `•
PROPERTIES"
Nominal'
Weight
Size
Wall Thickness
per Foot
Area
1
S
r.
In.
In.
Lb.
In.2
In.'
Ins
In.
6 x 6
.5000
1/2
35.24
10.4
50.5
16.8
2.21
.3750
%
27.48
8.08
41.6
13.9
2.27
.3125
5/16
23.34
6.86
36.3
12.1 •
2.30
.2500
1/4
19.02
5.59
30.3 .
10.1
2.33
.1875
%6
14.53
4.27
23.8
7.93
2.36
5 x 5
.5000
1/2
r
28.43
8.36
27.0
10.8
1.80
.3750
22.37
6.58
22.8
J9.11
1.86
.3125
16
19.08
5.61
20.1
8.02
1.89
.2500
'/4
15.62
4.59
16.9
6.78
1.92
.1875
%r,
11.97
3.52
13.4
5.36
1.95
4 x 4
.5000
1/2
21.63
6.36
12.3
6.13
1.39
.3750
%
17.27
5.08
10.7
5.35
1.45
.3125
%6
14.83
4.36
9.58
4.79
1.48
.2500
'A
12.21
3.59
8.22
4.11
1.51
.1875
%6
9.42
2.77
6.59
3.30
1.54
3.5 x 3.5
.3125
%6
12.70
3.73
6.09
3.48
1.28
.2500
1/4
10.51
3.09
5.29
3.02
1.31
.1875
3h6
8.15
2.39
4.29
2.45
1.34
3 x 3
.3125
%6
10.58
3.11
3.58
2.39
1.07
.2500
1/4
8.81
2.59
3.16
2.10
1.10
.1875
%6
6.87
2.02
2.60
1.73
1.13
2.5 x 2.5
.2500
% ,
7.11
2.09
1.69
1.35
.899
.1875
3/16-
5.59
1.64
1.42
1.14
.930
2 x 2
.2500 "
1/4
5.41
1.59
.766
.766
.694
.1875
3/16
4.32
1.27
.668
.668
.726
" Outside dimensions across flat sides.
"" Properties are based upon a nominal outside corner radius equal to two times the
wall thickness.
Fy = 46 ksi
COLUMNS'
Square structural tubing
Allowable concentric loads in kips
Nominal Size
4
3 x 3
Thickness
1/2
%
5/16
1/
%6
5/16
1/4
3/16
Wt./ft.
21.63
17.27
14.83
12.21
9.42
10.58
8.81
6.87
Fy
46 ksi
0
176
140
120
99
76
86
71
56
2
168
134
115
073
80
67
53
3
162
130
112
92
71
77
64
50
4
156
126
108
89
69
73
61
48
0
5
150
121
104
86
67
68
57
45
6
143
115
100
83
64
63
53
42
0
7
135
110
95
79
61
57
49
39
8
126
103
90
75,
58
51
44
35
9
117
97
84
70
65
44
38
31
m
o
(31,1
108
89
78
65
51
37
33
27
I1
98
82
72 .
60.
47
31
27
22
m
12
87
74
65
55.
43
26
23
19
r
13
75
65
58
49
39
22
19
16
14
65
57
51
43
35
19
17
14
15
57
49
44
38
30
16
15
12
a
16
50
43
39
33
27
14
13
11
17
44
38
34
29
24
13
11
9
18
39
34
31
26
21
10
8
19
35
31
28
V
19
20
32
28
25
21
17
21
29
25
23
19
16
w
22
26
23
21
18
14
23
24
21
19
16
13
24
19
17
15
12
25
14
11
Properties
A (in?)
6.36
5.08
4.36
3.59
2.77
3.11
2.59
2.02
I (In4) .
12.3
10.7
9.58
8.22
° 6.59
3.58
3.16
2.60
r (in.)
1.39
1.45
1.48
1.51
1.54
1.07
1.10
1.13
B}fBending
1.04
0.949
0.910
0.874
0.840
1.30
1.23
1.17
actor
*a
1.83
1.59
1.43
1.22
0.983
0.533
0.470
0.387
Tabulated values of a must be multiplied by 106.
Note: Heavy line indicates){l/r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
- 41) K51
'
COLUMNSFF
Rectangular structural tubing X
X
''. Allowable concentric loads in kips
Y
>.
. Nominal Size
16 x 12
16 x 8
14 x 10
121tx 8
12 x 6
Thickness
1h
1A
3L
1h !Fl
5�8 P2
3I8 5/8
1%2
3/8
K �
W Wt./ft.
89.68
76.07
76.07 58.I0
76.33 62.46
47.90 67.82
55.66
42.19
. FY
46 ksf
b.
0
729
618
618 472
618 508
389 549
453
10
max. 0
6
700
580
572
588 450
582 445
580 475
571 468
365 SW
360 488
.411
402
317
310
.00
7
8
695 _
689
564
576 440
562 461
354 476
393
303
9
b83
555
569 435
553 453
349 464•
450
383
372
296
288
3 5
10
676
546
562 430
543 446
343
v
y o11
670
536
555 425
532 437
337 436
361
349
280
271
m
•Ycfj'' V
`-
12
663
656
526
516
547 419
539 413
521 429
510 420
330 422
323 406
337
262
`'t•.+�
r' "P. .,�
13
14
648
505
531 407
498 410
316 390
325
312
253
243
15.
641
494
523 401
486 401
309 374
r 1s
16
633
482
514 394
387
474 391
461 380
302 357
294 339
298
284
233
222
r'
17
18
625
617
470
458
505
496 381
447 370
286 320
269
212
200
.
19
20
608
600
445
432
486 373
477 366
434 359
419 347
278 301
269 281
254
238
189
�i
22
24
582
553
405
376
457 351
436 335
390 324
359 299
252 239
233 201
205
173
164
139
*1
26
28
543
523
346
314
413 319
390 302
326 273
291 245
214 171
193 148
147
127
118
1
s!^
30
502
281
366 284
255 216
. 172 129
111
89
89
s
q gip'c
32
480
247
341 265
224 190
151 113
97
78
`
34
457
219
315 245
225
199 168
177 150
134 100
119 89
86
77
69
62
36
38
433
409
195
175
288
260 204
I59 135
107 80
69
55
53
39
396
166
246 194
151 128
102 76
A ' W
40
384
158
234 184
143 122
97
L
50
J s..
.:: Properties
F
x
E' ;A (in.2)
26.40
22.40
22.40
17.10
22.40
18.40
14.10
19.90
16.40
12.60
':."
Ix (n 4)
962
722
608
476
418
353
279
337
287
228
t
ly (in.4)
618
244
361
284
221
188
149
112
96.0
77.2
1.72
�^ rx/r
i Y
1.25
4.84
E.72
3.30
1.30
4.02
1.29
4.08
1.37
3.14
1.37
3.20
1.37
3.26
1.74
2.37
1.73
2.42
2.48
kA' ry (in.)
B,z Bending
0.219
0.248
0.257
0.251
0.322
0.312
0.303
0.354
0.342
0.330
1*y
By factors
0.256
0.366
0.309
0.301
0.405
0.391
0.377
0.535
50.3
0.511
42.8
0.488
34.0
ax
143
92.1
108-
• 36.4
90.6
53.9
70.9
42.3
62.3
33.0
52.6
28.0
41.6
22.2
16.6
14.3
11.5
aye
° Tabulated values of ax and ay must be multiplied by 106.
d Note: Heavy line indicates Kl/r of 200.
AMERICAN INSTITUTE OF STEEL'CONSTRUCTION