Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Structural Calculations
P.L0 AA 0003068a� E N IB0001031 r; AROHITEOTS ,* i INTERIORS 4 flPLANNERS x 8628 BRIDLE PATH COURT t� SUITE 208 DAVIE, FLORIDA 33328 F TEL (305) 439-3346 �S af@faMarchitects com r 'tom �"'+'Y P-," s., ^� �'-¢ �.3:•r Date: March 12, 2020 Re: Structural calculations for: 4710 Midway Rd. Fort Pierce, FLORIDA Design Loads: Roof L.L. = 20 psf Roof D.L. =15 psf Floor L.L. =40 psf Floor D.L. =25 psf Wind Loads as per ASCE 7-2010 Florida Building Code 2017, 61 edition Residential 5 Asghar J. Fathi, R.A. AR0016049 Page 1 of 7 MecaWind v2340 Software Developer.: Meca Enterprises Inc., www.meca.biz, Copyright U 2018 Calculations Prepared by: _ Date: Mar 04, 2020 Project #: 071519 Designer: FATHI Location: 4710 MIDWAY RD Description: DEB YUSUF RES FileLocation : C:\Projects\wind loads\DEB.wnd Basic Wind Parameters Wind Load Standard = ASCE 7-10 Exposure Category = C Wind Design Speed = 150.0 mph _ II Risk Category = L Shaped Structure Type = Building Building Type General Wind settings = True = Include ASD Load Factor of 0.6 in Pressures Incl_LF = Rigid DynType = Dynamic Type of Structure = 1.000 Hz 1) NF = Natural Frequency of Structure (Mode = 0.000 ft Elevation) above Sea Level Alt = Altitude (Ground = 0000 ft Bdist = Base Elevation of Structure = True SDB = Simple Diaphragm Building = False Reacs = Show the Base Reactions in the output = Ch 27 Pt 1 MWFRSType = MWFRS Method Selected Topographic Factor per Fig 26.8-1 = None Topo = Topographic Feature = 1.000 Kzt = Topographic Factor Building Inputs RoofType: Building Roof Type = L Shaped L1 Width of End 1 - 16.000 ft Width Along Side = 56.000 ft L2 : Length Along Back = 40.000 ft = 16.000 ft L3 EHt Eave Height = 10.000 ft L4 : Width End 2 RE Roof Entry Method Ridge RHt : Ridge Height = 10.000 ft Gabled Endl : Roof Type on End 1 = Gabled End2 : End2 Method = OHType : Overhang Type None Par : Is there a Parapet - False Exposure Constants per Table 26.9-1: Const from Table 26.9-1= ft Alpha: Const from Table 26.9-1= 9.500 1.0.000 Const from Table 26.9-1= 0 At: Const from Table 26.9-1= 0.105 t: B : Const from Table 26.9-1= 0. 650 Am: Const from Table 26.9-1= 0.154 Bm: Const from Table 26.9-1= 0.200 C: const from Table 26.9-1= 0.200 Epa: Overhang Inputs: Std = Overhangs on all sides are the same OHType = Type of Roof Wall Intersections Main Wind Force Resisting System 0*1&R5) Calculations per Ch 27 Pert 1: Zh = Mean Roof Height for Kh: h + Base Dist Kh = Since Zht15 ft [4.572 m] --> 2.01 * (15/zg)^(2/Alpha) Kzt = Topographic Factor is 1 since no Topographic feature specified Kd = Wind Directionality Factor per Table 26.6-1 GCPi = Ref Table 26.11-1 for Enclosed Building RA = Roof Area LF = Load Factor based upon ASD Design qh = (0.00256 * Kh * Kzt * Kd * V^2) * LF qin = For Negative Internal Pressure of Enclosed Building use qh*LF qip = For Positive Internal Pressure of Enclosed Building use qh*LF Gust Factor Calculation: Gust Factor Category I Rigid Structures - Simplified Method G1 = For Rigid Structures (Nat. Freq.>l Hz) use 0.85 Gust Factor Category II Rigid Structures - Complete Analysis Zm = 0.6 * Ht Izm = Cc * (33 / Zm) 0.167 Lzm = L * (Zm / 33) ^ Epsilon Q = (1 / (1 + 0.63 * ((B + Ht) / Lzm)^0.63))^0.5 G2 = 0.925*((1+1.7*lzm*3.4*Q)/(1+1.7*3.4*lzm)) = True = None = 10.000 ft = 0.849 = 1.000 = 0.85 +/-0.18 1280.00 sq ft 0.60 24.94 psf = 24.94 psf = 24.94 psf = 0.85 = 15.000 ft = 0.228 = 427.057 = 0.972 = 0.910 a 1 j=l-. ///I". R T.-ro i„rAr/ A,nnnara/R oaminLF/MecaWind/SelectedAnalysis.html 3/4/2020 Page 2 of 7 Gust Factor Used in Analysis = 0.850 G = Lessor Of G1 Or G2 bwms Wind Direction A (Ref Fig 27.4-1) = 10.000 ft h = Mean Roof Height Of Building = 10.000 ft RHt = Ridge Height Of Roof = Horizontal Dimension Of Building Normal To Wind Direction = 56.000 ft B L = Horizontal Dimension Of building Parallel To Wind Direction = 40.000 ft L/B = Ratio Of L/B used For Cp determination = 0.714 = 0.250 h/L = Ratio Of h/L used For Cp determination = 0.0 Deg Slope Roof_1 = Slope of Roof = Roof (<10 Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft) = -0.18, -0.9 Roof_1 = Roof (Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft) 10.000 ft) = -0.18, = -0.18, -0.9 =0.9 Roof_2 = Roof (<10 Along Ridge) Coeff (h/2 to h) (8.000 ft to 2h) (10.000 ft to 20.000 ft) = -0.18, -0.5 Roof_2 = Roof (Along Ridge) Coeff (h to = Roof (<10 Along Ridge) Coeff (h to 2h) (10.000 ft to 16.000 ft) = -0.18, -0.5 Roof-3 Roof 3 = Roof (Along Ridge) Coeff (>2h) (>20.000 ft) = -0.18, -0.3 Cp WW = Windward Wall Coefficient (All L/B Values) = 0.80 -0.50 Cp_LW = Leward Wall Coefficient Using L/B = -0.70 Cp_SW = Side Wall Coefficient (All L/B values) = Parapet Combined Net Pressure Coefficient (Windward Parapet) _ GCpn_WW GCpn_LW = Parapet Combined Net Pressure Coefficient (Leeward Parapet) -1.00 wall Wind Pressures based On Positive Internal Pressure (+GCPi) - Direction A All wind pressures include a load factor of 0.6 Windward Leeward Side Total Minimum Elev 4z Rzt GCPi Press Press Press Press Pressure* ft psf psf psf psf psf psf psf 10.00 0.949 1.000 24.941 0.18 12.47 -15.09 1 -19.33 27.56 9.60 Wall wind Pressures based on Negative Internal Pressure (-GCPi) - Direction A All wind pressures include a load factor of 0.6 windward Leeward Side Total Minimum Elev Kzt qz GCPi Press Press Press Press Pressure* ft psf psf psf psf psf psf psf 10.00 0.849 1.000 24.94 -0.18 21.45 -6.11 -10.35 27.56 9.60 Notes Wall Pressures: = Topographical Factor KZ = Velocity Press Coeff Kzt GCPi = Internal Press Coefficient q z = 0.00256*Kz*Kzt*KdKd*V^2 Side = qh * G * Cp_SW - qip * +GCPi Windward = qz * G * Cp WW - qip * +GCPi Leeward = qh * G * Cp_LW - qip * +GCPi Total = Windward Press - Leeward Press * Minimum Pressure: Para 27.4.7 no less than 9.60 psf (Incl LF) applied to Walls Windward: Walls 1 and 5 Leeward: Wall 3 Side: alles Acting AWAY from Surface + Pressures Acting TOWARD Surface - Roof Wind Pressures for Positive 6 Negative Internal Pressure (+/- GCPi) - Direction A All wind pressures include a load factor of 0.6 start End Pressure • Pressure Pressure Pressure Roof Var Dist Dist Cp min Cpax m GCPi Pn min* Pp min* Pn max E'P psf ft ft psf psf psf Roof 0.000 5.000 -0.180 -0.900 0_.180 0.67 _ -8.30 _-14.59 _23.57 _1_(11) Roof_1 (8,9) 0.000 5.000 ~-0.180 -0.900 0.180 _ 0.67 _ -8.30 -14.59L-23.57 ^ Roof_2 (10) B.000 10.000 -0.180 ..... 0.180 0.67 -8.30 -14.59-23.57 10.000 20.000 -0.180 _-_0.500 0.180 0.67 -8.30 �- -8.30 Roof_2 (8,9j -6_.11-15.09 -6.11-15.09 (10) _ 10.000 16.000 -0.180 -0.500 0.180 0.67 Roof_3 Roof 3 (8,9) 20.000 32.000 -0.180 -0.300 0.180 0.67 -8.30 -1.87-10.85 C% rt - . ! J i ri- ff T... -- /.,--../ A „�n.tQ nz na-mino,/MecaWind/SelectedAnalysis.html 3/4/2020 Page 4 of 7 Roof Var Dist Dist ft ft Cp min Cp max GCPi Pn min* psf Pp min* psf P _� psf � P psf 1 0.000 5.000 -0.180 -0.900 0.180 _ 0.67 _ -8.30 `-14.59 -23.57 - - Hof 1 (8) (10,11) 0.006 5.000 -0.180 -0.900 --- 0--- - -8.30 - --1- _- -- - 57 >of 8.000 10.000 -0.180 -0 900 --- 0.180 0.67 -8.30 -14.59 �-2 _ 57 )of 2 (9) 8.000 10.000 -0.180 -0.900 0.180 0.67 -8.30 -14.59 -23' 57 )of 2 --- (11,11) 0.. - 10.000 16.000 _-. _.__- -0.180 ---- _._. -0.500 __. - .. _. 0.180 _. 0.67 -8.30 -6.11 -1 . 09 )of-3 3 10.000 20.000 -0.180 •--5--0 -0.50..67 - -0--_. 180 - 0 -8.30 -6_11 -15.0S 3of 4 (10,11) (11,11) 10.000 20.000 -0.180 -0.500 0.180 0.67 �0.67 -8.30 ~- _-6.11 ,_ -15. 05 Hof Hof 5 (10,11) _ 20.000 56.000-0.180 -0.300 -0.180 _ - -8.30-1.87 ---- _.__ . -- -10.8: -10.8. Dof 6 -(11,11) 20.000 56.000 --0.180 -0.300 0.180 0.67 -8.30 -1.87 Notes Roof Pressures: = Start Dist from Windward Edge End Dist = End Dist from Windward Edge Start Dist = Largest Coefficient Magnitude Cp Min = Smallest Coefficient Magnitude Cp Max Pp_max _h*G*C max - gip*(+GCPi) Pn_max = qh*G*Cp max - - qin*(-GCpi) Pp min* = qh*G*Cp min - qip*(+GCPi) Pn_min* = qh*G*Cp min Y = Dir Perpendcular to Ridge qin*(-GCPi) Z = Vertical OH = Overhang X = Dir along Ridge due to Cp Min can become critical when wind is combined * The smaller uplift pressures roof live load pr snow load; load combinations are given in ASCE 7 with + Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface NOW Wind Direction C (Ref Fig 27.4-1) = 10.000 ft h = Mean Roof Height Of Building = 10.000 ft RHt = Ridge Height Of Roof = Horizontal Dimension Of Building Normal To Wind Direction = 56.000 ft B L = Horizontal Dimension Of building Parallel To Wind Direction = 00.70 ft 14 L/B = Ratio Of L/B used For Cp determination = 0.250 h/L = Ratio Of h/L used For Cp determination = 0.0 Deg Slope = Slope of Roof = Roof (<10 Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft) _ -0.18, -0.9 -0.9 Roof_1 Roof-1 = Roof (Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft) h) (8.000 ft to 10.000 _ -0.18, ft) Roof_2 = Roof (<10 Along Ridge) Coeff (h/2 to 2h) (10.000 ft to 20.000 ft) _ -0.18, -0.5 Roof_2 = Roof (Along Ridge) Coeff (h to Along Ridge) Coeff (h to 2h) (10.000 ft to 16.000 ft) = Roof 3 = Roof (<10 Roof (Along Ridge) Coeff (>2h) (>20.000 ft) -0.16, -0.3 Roof-_3 = Cp WW = Windward Wall Coefficient (All L/B Values) = 0.80 = -0.50 Cp-.LW = Leward Wall Coefficient Using L/B = -0.70 Cp_SW = Side Wall Coefficient (All L/B values) Coefficient (Windward Parapet) = 1.50 GCpn WW = Parapet Combined Net Pressure Combined Net Pressure Coefficient (Leeward Parapet) = -1.00 GCpn_LW = Parapet Wall Wind Pressures based On Positive Internal Pressure (+GCPi) - Direction C All wind pressures include a load factor of 0.6 Windward Leeward Side Total Minimum Elev KZt qQ GCPi Press press Press Press Pressure* ft psf psf psf psf psf psf psf 10.00 0,849 1.000 24.94 0.18 12.47 -15.09 -19.33 27.56 9.6C wall Wind Pressures based on Negative Internal Pressure (-GCPi) - Direction C All Hind pressures include a load factor of 0.6 Windward Leeward Side Total Minimum Elev KZ KZt qz GCPi press Press Press Press Pressure* ft psf psf psf psf psf psf psf 10.00 0.849 1.000 24.94 -0.18 21.45 -6.11 -10.35 27.56 9.6( Notes Wall Pressures: Kz = velocity Press Exp Coeff Kzt = Topographical Factor qz = 0.00256*Kz*Kzt*Kd*V^2 GCPi = Internal Press Coefficient 0 r.I--//Ir•ItTe areA,car/Anne)ata/Roaming/MecaWind/SelectedAnalysis.html 3/4/2020 Page 5 of 7 Side = qh * G * Cp_SW - qip * +GCPi Windward = qz * G * CpWW - qip * +GCPi Leeward = qh * G * Cp_LW - qip * +GCPi Total = Windward Press - Leeward Press * Minimum Pressure: Para 27.4.7 no less than 9.60 psf (Incl LF) applied to Walls Windward: Wall 3 Leeward: Wall 1 & 5 Side: Walls 2, 4 & 6 + Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface Roof wind Pressures for Positive & Negative Internal Pressure (+/- GCPi) - Direction C A11 wind pressures include a load factor of 0.6 Start End Pressure Pressure Pressure Pressure Roof Var Dist Dist Cp min Cp_ max GC Pn min* PP min* Pn max PP psf ft ft psf psf pag Roof 1 (10) 0.000 5.000 -0.180 ------ 0.180 0.67 -8.30 -14.59 -23.57 Roof(8,9) 0.000 5.000 -0.180 -0.900 0.180 0.67 -8.30 __ -14.59 --23. - _1 Roof 2 (11) 8.000 10.000 -0.180 -0.900 0.180 0.67 -8.30 --_-19.59 _ -23.57 -- Roof(8,9) �. 10.000 20.000 -0.180 -- -0.500 0.180 0_67 -_ -8.30 8.30 �- -6_11 -6.11 _ �_-- -._.. -15.0 _2 Roof (11) - - -- 10.000 16.000 -4.180 -0.500 0.180 0.67 - - ____Jo. -10.85 _3 Roof 3 (8,9) -20.000 40.000 _-0.180-8.30 -1.87 Notes Roof Pressures: Start Dist = Start Dist from Windward Edge End Dist = End Dist from Windward Edge Cp Max = Largest Coefficient Magnitude Cp Min = Smallest Coefficient Magnitude p max = qh*G*Cp max - qip*(+GCPi) Pn_max = qh*G*Cp max - gin*(-GCpi) Pp min* = qh*G*Cp min - qip*(GCPi) p- + Pn_min* = qh*G*Cp min - qinF(-GCPi) OH = Overhang X = Dir along Ridge Y = Dir Petpendcular to Ridge Z = Vertical * The smaller uplift pressures due to Cp Min can become critical when wind is combined with roof live load or snow load; load combinations are given in ASCE 7 + Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface xwFRS Wind Direction D (Ref Fig 27.4-1) h = Mean Roof Height Of Building RHt = Ridge Height Of Roof g = Horizontal Dimension Of Building Normal To Wind Direction f building Parallel To Wind Direction L = Horizontal Dimension O L/B = Ratio Of L/B used For Cp determination h/L = Ratio Of h/L used For Cp determination Slope = Slope of Roof 1 = Overhang (Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft) OH OHI = Overhang (Along Ridge) Coeff (h to 2h) (10.000 ft to 20.000 ft) OH = Overhang (Along Ridge) Coeff (>2h) (>20.000 ft) OH__Bot = Overhang Bottom Roof = Roof (<10 Along Ridge) Coeff (>2h) (>40.000 ft) Roof = Roof (Along Ridge) Coeff (0 to h) (0.000 ft to 5.000 ft) Roof_2 = Roof (Along Ridge) Coeff (h to 2h) (10.000 ft to 20.000 ft) Roof 3 = Roof (Along Ridge) Coeff (>2h) (>20.000 ft) = 10.000 ft = 10.000 ft = 40.000 ft = 56.000 ft = 1.400 = 0.179 = 0.0 Deg _ -0.18, -0.9 _ -0.18, -0.5 _ -0.18, -0.3 = 0.8, 0.8 -0.18, -0.3 -0.18, -0.9 _ -0.18, -0.5 _ -0.18, -0.3 = 0.80 Cp WW = Windward Wall Coefficient (All L/B Values) = -0.42 Cp_LW = Leward Wall Coefficient Using L/B = -0.70 Cp_5W = Side Wall Coefficient (All L/B values) = 1.50 GCpn WW = Parapet Combined Net Pressure Coefficient (windward Parapet) _ _1.00 GCpn_LW = Parapet Combined Net Pressure Coefficient (Leeward Parapet} Wall Wind Pressures based On Positive Internal Pressure (+GCpi) - Direction D All mind pressures include a load factor of 0.6 windward Leeward Side Total Minimum Elev NZ Kzt qZ GCpi Press Press Press Press Pressure* ft psf psf psg psf psf psf psf 10.00 0.849 1.000 24.94 0.18 12.47 -13.39 -19.33 25.86 9.60 Wall Wind Pressures based on Negative Internal Pressure (-GCPi) - Direction D All wind pressures include a load factor of 0.6 441-111P-RTaAre/naPr/Annr)ata/Roami i&MecaWind/SelectedAnalysis.html 3/4/2020 Page 6 of 7 ft I I p I p I Windward I Leeward Side I Total I ressur Ka Kzt z GCPi Press Press Press Press P®sears* E of sf psf psf psf psf psf 10.00 0.849 1.000 24.94 -0.18 21.45 -4.41 -10.35 5.86 9.60 Notes Wall Pressures: Kz = Velocity Press Exp Coeff Kzt = Topographical Factor qz = 0.00256*Kz*Kzt*Kd*V^2 GCPi = Internal Press Coefficient Side = qh * G * cp_SW - qip * +GCPi Windward = qz * G * Cp WW - qip * +GCPi Leeward = qh * G * Cp-LW - qip * +GCPi Total = Windward Press - Leeward Press * Minimum Pressure: Para 27.4.7 no less than 9.60 psf (Incl LF) applied to Walls Windward: Walls 4, 5 and 6 Leeward: Wall 2 Side: Walls 1 & 3 + Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface Roof Wind Pressures for Positive & Negative Internal Pressure (+/- GCPi) - Direction D All wind pressures include a load factor of 0.6 Roof Var Start Dist £t End Dist ft Cp min snax GCPi CP_ Pressure Pn min* psf Pressure Pp snip* psf Pressure Pressure Pn max Pp psf psf OH(10,11) 0.000 5.000 -0.180 -0.900 0.000 -3.82 -3.82 -19.08 -19.08 _1 OH_2 (10,11) 16.006 20.000 -0.180 -0.500 0.000 -3.82 ^-3.82 -3.82 - -10.60 - _ -10.60 OR 3 (10,11) a 20.000 56.000 -0.180 -0.300 0.000 _ _ -3.82 r_- _ -6_.36 16^96 N/A 0.800 0.800 0.000 16.96 16.96 � ~-8.30 16.96 �M,-1.87 Roof (8,9) 48.000 -0.300 0.180 0.67 -10.85 40.000 Roof l (10,11) 0.000 5.000 _-0.180 -0.180 ^ -0.900 0.180 0.67 -8.30 -14.59 _- 23.57 09 Roof_2-(10,11) 10.000 20.000 -0,180 -0.500 0.180 0.67 -T -8.30 ��--8.30 -6.11 -- -- - - Y ��-10.85 Roof 3 (10,11) 20.000 56.000 -0.180 -0.300 0.180 0-67 Notes Roof Pressures: Start Dist = Start Dist from Windward Edge End Dist = End Dist from Windward Edge nt Magnitude Cp _Min = Smallest Coefficient Magnitude CpMax = Largest CoefficiePnmx = qh*G*Cpmax - qin*(-GCpi) P -max* = qh*G*Cmax - qip*(+GCPi) = qh*G*Cp min - qin(-GCPi) Ppmin= qh*G*Cpmin - qip*(+GCPi) Pn min* OH = Overhang X = Dir along Ridge Y = Dir Perpendcular to Ridge Z = Vertical * The smaller uplift pressures due -to Cp Min can become critical when wind is combined with roof live load or snow load; load combinations are given in ASCE 7 + Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface Components and Cladding (c&c) calculations per Ch 30 Part 1: (End 1) = 10.000 ft Zh = Mean Roof Height for Kh: h + Base -Dist Kh = Since Zh<15 ft [4.572 m] --> 2.01 * ( [15 ft or 4.572 m] / zg)^ (2/Alpha)= 0.849 Kzt = Topographic Factor is 1 since no Topographic feature specified = 11.0B00 Kd = Wind Directionality Factor per Table 26.6-1 0.= +/-0.18 GCPi = Ref Table 26.11-1 for Enclosed Building 6.0 LF = Load Factor based upon ASD Design = = 094 psf qh = (0.00256 * Kh * Kzt * Kd * V^2) * LF = 24.000 ft LHD = Least Horizontal Dimension: Min(B, L) = 4.000 ft a1 = Min(0.1 * LHD, 0.4 * h = 4.000 ft a = Max(al, 0.04 * LHD, 3 ft [0.9 m]) = 0,250 h/B = Ratio of mean roof height to least hor dim: h / B wind Pressures for c&c Ch 30 Pt 1 (End 1) All wind pressures include a load factor of 0.6 Description width Span Area 1/3 p P Ref GCp GCP Max biro Min ft Zone Pt ft aq ft Rule Fig Max psf psf 4.000 4.000 16.00 No 30.4-1 0.868 -0.958 26.12 -28.37 A 4 15.00 No 30.4-1 0.872 -1.204 26.23 -39.51 3.000 0.000 _ T9.00 ~ 30.4-1 0.900 26.93 -35.91 5 3.000 3.000 ^21.33 No Yes _1.260 - 30.4-1 0.848 -0.938 25.63 -27.87 8.000 No �.- . 30.4-1 0.900 -1 26.93 91 E 5 2.000 4.000 8.00 ,260 r,«r•.RT..o,.n Amnnntn1RoFiming/MccaWind/SelectedAnalysis.hhnl 3/4/2020 Page 7 of 7 11 AND 2 1 5 1 6.0001 6.6001 39.601 No 130.4-110.8051-1.070124.561-31.17I Area = Span Length x Effective Width 1/3 Rule = Effective width need not be less than 1/3 of the span length GCp = External Pressure Coefficients taken from Figures 30.4-1 through 30.4-7 p = Wind Pressure: qh*(GCp - GCpi) [Eqn 30.4-13* *Per Para 30.2.2 the Minimum Pressure for C&C is 9.60 psf [0.460 kPa] {Includes LF) Since Roof Slope <= 10 Deg, the GCp value is reduced by 10% D filp-H/C.-ATcerghLSer/AvnData/Roaming/MecaWind/SelectedAnalysis.html 3/4/2020 -�77P,�V7"AL e;*k'L SrQL, M0,,4-� ,bluer—r�G�' T ips - Mlp c z 2 �o (1,57� o r7/ g�7 5 .-pa xeO)v Q •37 �h 419 .. a lZ- . k/• v��A7-r o 7V Aor%w'T C 35) 4- (-7) v� 12 Gr�c. F70 . 2 ! n-, 70 4�W/P7, OA f / 90p to, � 9!5dP � 22�, 1.90 ?7 STRUCTURAL TUBING Square Dimensions and properties DIMENSIONS PROPERTIES°" Nominal* Weight Size Wall Thickness per Foot Area I S r In. In. Lb. In.2 Ina In 3 In. 16 x 16 .5000 '/2 103.30 30.4 1200 150 6.29 .3750 % 78.52 23.1 93I 116 6.35 .3125 5/16 65.87 19.4 789 98.6 6.38 n; 14 x 14 .5000 1/2 89.68 26.4 791 113 5.48 .3750 % 68.31 20.1 615 87.9 5.54 .3125 %6 57.36 16.9 522 74.6 5.57 12 x 12 .5000 1/z 76.07 22.4 485 80.9 4.66 .3750 % 58.10 17.1 380 63.4 4.72 .3125 T/16 48.86 14.4 324 54-.0 4.75 .2500 'Aa 39.43 11.6 265 44.1 4.78 10 x 10 .6250 % 76.33 22.4 321 64.2 3.78 .5000 1/2 62.46 18.4 271 54.2 3.84 3/6 47.90 14.1 214 42.9 3.90 .3750 .3125 %6 40.35 11.9 183 36.7 3.93 .2500 '/a 32.63 ; 9.59 151 30.1 3.96 ;. 8 x 8 .6250 % 59.32 17.4 153 38.3 2.96 'k i .5000 1/2 48.85 14.4 131 32.9 3.03 3/8 37.69 11.1 106 26.4 3.09 t€ .3750 .3125 5h6 31.84 9.36 90.9 22.7 3.12 .2500 1/4 25.82 7.59 75.1 18.8 3.15 .1875 3/16 19.63 5.77 58.2 14.6 3.18 7 x 7 .5000 1/2 42.05 12.4 84.6 24.2 2.62 .3750 % 32.58 9.58 68.7 19.6 2.68 27.59 8.11 59.5 17.0 2.71 1/4 22.42 6.59 49.4 14.1 2.74 .2500 .1875 3/16 17.08 5.02 38.5 11.0 2.77 " r3 • z " Outside dimensions across flat sides. Properties are based upon a nominal outside corner radius equal to two times the wall thickness. A' STRUCTURAL TUBING r -7-� Square Dimensions and properties LJ DIMENSIONS `• PROPERTIES" Nominal' Weight Size Wall Thickness per Foot Area 1 S r. In. In. Lb. In.2 In.' Ins In. 6 x 6 .5000 1/2 35.24 10.4 50.5 16.8 2.21 .3750 % 27.48 8.08 41.6 13.9 2.27 .3125 5/16 23.34 6.86 36.3 12.1 • 2.30 .2500 1/4 19.02 5.59 30.3 . 10.1 2.33 .1875 %6 14.53 4.27 23.8 7.93 2.36 5 x 5 .5000 1/2 r 28.43 8.36 27.0 10.8 1.80 .3750 22.37 6.58 22.8 J9.11 1.86 .3125 16 19.08 5.61 20.1 8.02 1.89 .2500 '/4 15.62 4.59 16.9 6.78 1.92 .1875 %r, 11.97 3.52 13.4 5.36 1.95 4 x 4 .5000 1/2 21.63 6.36 12.3 6.13 1.39 .3750 % 17.27 5.08 10.7 5.35 1.45 .3125 %6 14.83 4.36 9.58 4.79 1.48 .2500 'A 12.21 3.59 8.22 4.11 1.51 .1875 %6 9.42 2.77 6.59 3.30 1.54 3.5 x 3.5 .3125 %6 12.70 3.73 6.09 3.48 1.28 .2500 1/4 10.51 3.09 5.29 3.02 1.31 .1875 3h6 8.15 2.39 4.29 2.45 1.34 3 x 3 .3125 %6 10.58 3.11 3.58 2.39 1.07 .2500 1/4 8.81 2.59 3.16 2.10 1.10 .1875 %6 6.87 2.02 2.60 1.73 1.13 2.5 x 2.5 .2500 % , 7.11 2.09 1.69 1.35 .899 .1875 3/16- 5.59 1.64 1.42 1.14 .930 2 x 2 .2500 " 1/4 5.41 1.59 .766 .766 .694 .1875 3/16 4.32 1.27 .668 .668 .726 " Outside dimensions across flat sides. "" Properties are based upon a nominal outside corner radius equal to two times the wall thickness. Fy = 46 ksi COLUMNS' Square structural tubing Allowable concentric loads in kips Nominal Size 4 3 x 3 Thickness 1/2 % 5/16 1/ %6 5/16 1/4 3/16 Wt./ft. 21.63 17.27 14.83 12.21 9.42 10.58 8.81 6.87 Fy 46 ksi 0 176 140 120 99 76 86 71 56 2 168 134 115 073 80 67 53 3 162 130 112 92 71 77 64 50 4 156 126 108 89 69 73 61 48 0 5 150 121 104 86 67 68 57 45 6 143 115 100 83 64 63 53 42 0 7 135 110 95 79 61 57 49 39 8 126 103 90 75, 58 51 44 35 9 117 97 84 70 65 44 38 31 m o (31,1 108 89 78 65 51 37 33 27 I1 98 82 72 . 60. 47 31 27 22 m 12 87 74 65 55. 43 26 23 19 r 13 75 65 58 49 39 22 19 16 14 65 57 51 43 35 19 17 14 15 57 49 44 38 30 16 15 12 a 16 50 43 39 33 27 14 13 11 17 44 38 34 29 24 13 11 9 18 39 34 31 26 21 10 8 19 35 31 28 V 19 20 32 28 25 21 17 21 29 25 23 19 16 w 22 26 23 21 18 14 23 24 21 19 16 13 24 19 17 15 12 25 14 11 Properties A (in?) 6.36 5.08 4.36 3.59 2.77 3.11 2.59 2.02 I (In4) . 12.3 10.7 9.58 8.22 ° 6.59 3.58 3.16 2.60 r (in.) 1.39 1.45 1.48 1.51 1.54 1.07 1.10 1.13 B}fBending 1.04 0.949 0.910 0.874 0.840 1.30 1.23 1.17 actor *a 1.83 1.59 1.43 1.22 0.983 0.533 0.470 0.387 Tabulated values of a must be multiplied by 106. Note: Heavy line indicates){l/r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION - 41) K51 ' COLUMNSFF Rectangular structural tubing X X ''. Allowable concentric loads in kips Y >. . Nominal Size 16 x 12 16 x 8 14 x 10 121tx 8 12 x 6 Thickness 1h 1A 3L 1h !Fl 5�8 P2 3I8 5/8 1%2 3/8 K � W Wt./ft. 89.68 76.07 76.07 58.I0 76.33 62.46 47.90 67.82 55.66 42.19 . FY 46 ksf b. 0 729 618 618 472 618 508 389 549 453 10 max. 0 6 700 580 572 588 450 582 445 580 475 571 468 365 SW 360 488 .411 402 317 310 .00 7 8 695 _ 689 564 576 440 562 461 354 476 393 303 9 b83 555 569 435 553 453 349 464• 450 383 372 296 288 3 5 10 676 546 562 430 543 446 343 v y o11 670 536 555 425 532 437 337 436 361 349 280 271 m •Ycfj'' V `- 12 663 656 526 516 547 419 539 413 521 429 510 420 330 422 323 406 337 262 `'t•.+� r' "P. .,� 13 14 648 505 531 407 498 410 316 390 325 312 253 243 15. 641 494 523 401 486 401 309 374 r 1s 16 633 482 514 394 387 474 391 461 380 302 357 294 339 298 284 233 222 r' 17 18 625 617 470 458 505 496 381 447 370 286 320 269 212 200 . 19 20 608 600 445 432 486 373 477 366 434 359 419 347 278 301 269 281 254 238 189 �i 22 24 582 553 405 376 457 351 436 335 390 324 359 299 252 239 233 201 205 173 164 139 *1 26 28 543 523 346 314 413 319 390 302 326 273 291 245 214 171 193 148 147 127 118 1 s!^ 30 502 281 366 284 255 216 . 172 129 111 89 89 s q gip'c 32 480 247 341 265 224 190 151 113 97 78 ` 34 457 219 315 245 225 199 168 177 150 134 100 119 89 86 77 69 62 36 38 433 409 195 175 288 260 204 I59 135 107 80 69 55 53 39 396 166 246 194 151 128 102 76 A ' W 40 384 158 234 184 143 122 97 L 50 J s.. .:: Properties F x E' ;A (in.2) 26.40 22.40 22.40 17.10 22.40 18.40 14.10 19.90 16.40 12.60 ':." Ix (n 4) 962 722 608 476 418 353 279 337 287 228 t ly (in.4) 618 244 361 284 221 188 149 112 96.0 77.2 1.72 �^ rx/r i Y 1.25 4.84 E.72 3.30 1.30 4.02 1.29 4.08 1.37 3.14 1.37 3.20 1.37 3.26 1.74 2.37 1.73 2.42 2.48 kA' ry (in.) B,z Bending 0.219 0.248 0.257 0.251 0.322 0.312 0.303 0.354 0.342 0.330 1*y By factors 0.256 0.366 0.309 0.301 0.405 0.391 0.377 0.535 50.3 0.511 42.8 0.488 34.0 ax 143 92.1 108- • 36.4 90.6 53.9 70.9 42.3 62.3 33.0 52.6 28.0 41.6 22.2 16.6 14.3 11.5 aye ° Tabulated values of ax and ay must be multiplied by 106. d Note: Heavy line indicates Kl/r of 200. AMERICAN INSTITUTE OF STEEL'CONSTRUCTION