HomeMy WebLinkAboutTank specs120-2,000 ',lt1g
Finished with r tad..
Superior Aboveground Coating
8" dome in black plastic or galvanized steel
1 C�l��4CJ4
Fabricated to A.5-M,E- code. Section VIII, Division ]
F Registered with the National Board
For more information
888.558.8255
$ Tank Fey
s
e
ED
Dual se vice options for above or under
ground applications
Option 1: Superior, ready to bury, red
oxide dL cable powder coating with black
polyethN len dome*
Option - Aboveground option with
ArcClad coating and an 8° steel
AGUG d me
All valve and float gauge are centered
under dc me
_ _ . _ .. .
#Vacuu 4 � Purged
#72 liqui level outage valve orifice
IN 111111111111 111
011 Aortae,
#
OVERALL LENGTH
Dour;
s = I
C7 yr I
II I
II
LU w
I
II
I( in OUTSIDE I
I
p
LU a DIAMETER I
II
o D
o I
II I
LEG
WIDTH
LEG SPA C1 NG
WITHDRAWAL
r-- VALVE
GENERAL SPECIFICATIONS FLDA
GUA
% DYKE � _ ANODE
E gyp• stis CONNELTIdtd
Conforms to the latest edition and addenda of the ASME code for
FILLER
Pressure Vessels, Section VII€, Division 1. Camp lies with NFPA 58.
f � � � VALVE
Rated at 2501 psig from -202 F. to 1252 F. All tanks may be
evacuated to a full (14.7 psi) vacuum.
Vessel Finish: Coated with epoxy and red powder. (Tanks coated MULTiv
p Y p
ve - ""'`"
PLATE
with the epoxy powder must be buried). For Aboveground use,
-- `-
tanks will be coated with ArcClad zinc rich epoxy primer and
pE
super durable TGIC polyester topcoat.
'Applicable federal, state, or local regulations may contain specific requirements for protective coati
igs and cathodic protection. The purchaser and
installer are responsible for compliance with all federal state, local and NFPA industry regulations. Cathodic
protection is required and coating must be
continuous and uninterrupted and must comply with local, state or national code.
AGUG VESSEL DIMENSIONAL i ■
Water Outside Head Overall overall Leg
Leg
Capacity Diameter "type Length Height Width
Spacing Weight
120 wg-
24"
Ellip
5' - 513/16" 3' - 3/16"
101/8"
3'-o"
245 lbs.
7aM
454.2L
609:6 mm
1,671.6 mm 919.1 mm
257.2 mm
914.4 mm
117.1 kg.250
wg.
31.5"
Hemi
T- 2112" 3' - 711/16"
12 3/4"
3' - 6"
472 lbs.
946.3 L
800.1 mm
2,197.1 mm 1,109.6 rnm
323.9 mm
1,066.8 mm
214.7 kg -
320 wg.
31.5"
Hemi
8'- 113/4" 3' - 711/16"
12 3/4"
4' - 01/4"
588 lbs.
45 9
1,211.2 L
800.1 mm
2.736.9 mm 1.109.6 mm
323.9 mm
7,225.6 mm
266.7 kg.
500 wg.
37.42"
Hemi
9` -10" 4' -15/8"
15"
T - 0"
871 lbs.
30 6
1,892.5 L
950.5 mm
2,9972 mm 1,260.4 mm
381.0 mm
1,524.0 mrn
395.1 kg
1000 wg.
40:96"
Hemi
15-1013/16" 4'- 5 3/16"
161/4"
9'- 0"
1,729 lbs
15 5
3,785.0 L
1,040.4 mm
4,846.6 mm 1,350.9 mm
412.8 mm
2,743.2 mm
784.3 kg.
All vessels dimensions are approximate.
For more information
888.558.8285
Eng, Update: April 5, 2016
Why Tanks Corrode
Underground steel tanks corrode due to an electrochemical reaction
between the tank and the surrounding soil. The process of corrosion
occurs due to small voltage differences on the steel surface that result
in the flow of DC current from one location to another. Where current
flows from the tank into the soil corrosion occurs. This location is called
the anode in a corrosion circuit. Where currentflows from the soil to the
tank, no corrosion occurs. The progress of corrosion is determined by
the amount of current flowing between the anode and -the cathode and
whether the locations of the anode/ cathode remain constant over time.
Corrosion rates are generally higher in wet soil environments since the
conductivity of the soil promotes the flow of DO current in the corrosion
circuit.
Corrosion generally exhibits itself on underground tanks in either a
general overall rusting or more commonly, a pitting attack. Pit locations
may result from metallurgical conditions of the steel surface or soil
variafions such as rocks, salts, fertilizer, moisture concentration, oxygen
concentration, etc.
Preventing Corrosion
Protecting underground
tanks from corrosion is
easily achieved bythe use
of two commonly applied
protection methods:
external coating and
cathodic protection.
These two methods
are complementary
and should be used in
conjunction with the
other. An effective
external protective
coating insulates the steel from the soil environment, thus preventing
the flow of corrosion current from the anode to the cathode. An effective
external coating can protect over 99% of the tan ksurface area. However,
no coating is perfect. Damage from construction or soil stresses create
tiny defects, which may result in accelerated corrosion at the defect.
Cathodic protection prevents corrosion at those defects by applying
DC current from an external source, forcing the tank to became
cathode. Application of sufficient DC current to the tank will prevent any
corrosion from occurring. The two general types of cathodic protection
systems are sacrificial and impressed current. Sacrificial systems are
used when the amount of current required for the protection is small,
such as in underground propane tanks. Impressed current systems
are more commonly used for large structures such as large diameter
pipelines. Electrical isolation of the tank from metallic piping systems
- - _ -and-electrical grounds is -critical for the cathodic protection -system's
effectiveness.
How Sacrificial Cathodic Protection ►Forks
Sacrificial systems work by creating a galvanic connection between two
different metals The most common anode material is magnesium,
which when coupled to steel results in DC current flow from the
magnesium to 1he steel. The open circuit potential of steel is about
-0.50 volts referenced to a copper sulfate electrode. The open circuit
potential of mac nesium is about -1.5511 to -1.80V. By connecting the
two metals toga her, the difference of 1 to 1.25V volts results in current
flow to the tank hat overcomes the natural corrosion cells that exist on
the tank. With this current available to the tank, no corrosion occurs.
Magnesium An c des
There are a va iety of anode sizes and allays used for cathodic
protection. The wo primary alloys are designed as H-1 (or AZ63) and
High Potential. he H-1 alloy is produced from recycled magnesium
and has an open circuit potential of approximately --1.55V. This alloy
is well suited for protection of underground propane tanks. The High
Potential alloy is 9% pure magnesium having an open circuit potential
up to -1.$V. This alloy should be used for soil applications over 10,000
ohm -Gm resisthfi .
The two most c moron anode sizes used for underground propane
tanks are 9 lb. anc 171b. The size designation relates to the metal weight.
10' of #12 TVV i sulated wire is attached to the anodes. Anodes are
then backfilled in a mixture of gypsum, hentonite, and sodium sulfate
to lower the electrical resistance of the anode to soil. The mixture is a
low cost, nonhazardous, electrically conductive backfill. The anode and
backfill is then packaged in a cotton bag and either a cardboard box or
paper bag. Actual shipping weight of these anodes with backfill is 27
Ib. and 45 ib,
Application Regio mendations
Magnesium ano es can protect underground tanks in most soil
conditions. The H-1 alloy is generally veryeffective. The following chart
providessizeand uan%recommendationsfor various sizetanksbased
on conservative dE sign assumptions. This chart covers soil conditions
up to 10,000 oh -centimeter resistivity. Resistivities higher than
10,000 ohm-centmeter generally represent very dry soils. Verification
of soil resistivity cin be performed through soil analysis. Contact as
for design recommendations in locations where soil resistivities exceed
10,000 ohm -cm. o r if there is no effective external coating on the tank.
The propane servi a line from the tank to the house also must be
considered in the athodic protection design, unless the service line
is plastic. All underground steel pipe should be extemally coated with
a corrosion resista t material. The service line should be electrically
isolated at the hou e with an insulating fitting or union. If service pipe
is less than 50' in € ngth, the tank anodes will provide sufficient current
to protect both tan and pipe. For longer lengths of pipe, an additional
anode may be raga red at the house connections.
If another -metallic i naterial such as -copper -is -used-for service piping; - - - - - -
the pipe should be electrically isolated from the tank at the fill pipe
connection. Copper and steel Greats a galvanic couple that will accelerate
corrasion of the steel tank when directly connected to copper piping.
Generally, copper pi jing does not require cathodic protection.
Soil Type
Fertile Soils, Clay,
Sandy Loam
Sand, Gravel, Rocky
Areas
Tank Cap.
5 to 5000 ahm-cm
50011 to 10000 ohm -cm
(9a1.)
Size
Oty.
Alloy
Size
Qty.
Alloy
120
9#
1
H-1
9#
1
H-1
150
9#
f
H-1
9#
t
H-1
250
9#
1
H-1
9#
2
H-1
325
9#1
H-1
9#
2
H-1
500
174
1
F1'-1
9#
2
H-1
1000
17#
2
H-1
9#
4
H-1
1500
17#
2
H-1
9#
4
H-1
2000
17#
3
H-1
9#
6
H-1
*Based on 90% effective external coating, 2 malt/ current density, and 30-
yearAnode fife.
Anode Installation
1. Determine size and quantity of anodes from application chart.
2. When a single anode is installed, it should be located near the
tank center on either side of tank.
3.When multiple anodes are installed, space them evenly around
the tank. See examples below.
1 anode 2 anodes 4 anodes
=-4, k jc. C':_�
(777) c7D
4.Anodes are shipped in either cardboard boxes or multi -wall
paper sacks. Remove outer container and bury the cloth bagged
anode. If anode is supplied in plastic bag, remove plastic bag
before installing.
5. Install anodes approximately two to three feetfrom the tank and
at least as deep as the center line of the tank. Anodes work best
in locations with permanent moisture, so generally the deeper
the better.
S.After placing the anode, stretch out the anode connection wire
and extend over to a connection paint on the tank fill pipe.
1. cover the anode with approximately six inches of backfill' and
pour 5 gallons of water on the anode to saturate the prepared
backfill. Water is necessary to activate the anode.
8. Connect the anode wire to the tank with a low electrical
resistance connection. Examples are threaded stud on the
tank till pipe or any accessible metallic connection point to the
tank. All connections should be coated with a moisture-proot
material.
9. Ideally, the tank connection is made in the area of the tank fill
pipe within the covered dome. With access to the anode wire,
subsequent testing of the tank can include measurement of
anode output and verification of performance.
10.Verify performance of the anode using an appropriate test
procedure.
Connection Under Dome
Protection Testing Procedure
Equipment Nee ed: digital Voltmeter, Red Test Lead Min. 12' Long
& Black Lead Min. 2' Lang, Reference Electrode (GopperlGopper
Sulphate Half -C II)
STEP 1: Using a igital voltmeter insert the red test lead into the Holt
jack of the meter and select the 2 or 20 volt DC scale. Clip red test
lead connector to an uncoated metallic area of the tank, preferably
to the fill pipe m ltivalve. A good solid connection is very important.
(DD NOT connect to shroud).
STEP 2: insertth black test lead into the Common jack on the meter,
and connect the opposite end of the lead to a charged reference
electrode M cell .
STEP 3: Remove protective cap from the porous plug at bottom end
of electrode. Pla a porous plug and into native soil (remove grass if
necessary) atfour locations around the tank (one on each side of the
tank, and one at each and of the tank). If difficulty is encountered
obtaining readings, moisten soil with water or dig Y2 cell deeper into
the sail.
STEP 4: Record all four meter readings on an appropriate form. The
feast of all four r actings should be a minimum of -0.850v or more
negative. {Note: If any of the four readings are below (less negative)
-0.850v then the tank is not fully protected}.
Charainq Reference Electrode
STEP 1: Unscre and remove porous plug end of new reference
electrode. Add deionized or distilled water to the copper sulfate
crystals, filling electrode completely. The solution will turn blue in
calor and there should always be excess crystals at the bottom of
the tube. DO NO USE TAP WATER.
STEP 2: Replace orous plug end of electrode and place in an upright
position so that e porous plug end is facing in the down position
and let stand for 1 hour before use. This will allow the porous plug
to become completely saturated before use.
Caution: Do nota r1ow electrode to contact oil, road salts, or other
substances that may contaminate the solution by absorption
through porous p ,ug. Do not a#law electrode to freeze.
Distributed By:
.1.- . - - .. .. . .I - - - . - - - _ - - - - - -
1112o11.50W
Job Name
Contractor
Job Location
Approval _
Engineer
Contractor'
Approval
- - Renresenta
SKU
Dormant Supr=Safell
Flexible Gas Appliance
Connectors
The flexible connection between the gas supply and the gas inlet
of a GeneracP Stationary Outdoor Backup/Standby Generator.
Features
• Operating Temperature -40-F to 150-F (-40-C to 65.6`C)
■ Operating Pressure
MAX 0.5psi (3.45 kPa)
• Hydrostatic Burst Pressure
MIN 250psi (1725 kPa)
• Flexible Tube Material
Annealed 304 Stainless Steel
• Flare Nut Material
Carbon Steel with Zinc Trivalent
OL4836A CAN40-4141-146L 40 1 %
Chromate Plating
• Flare Adapter Material
Carbon Steel with Zinc Trivalent
OL483EC CAMEO-6161-15GL 6_0 1'/1
Chromate Plating
CSA Group Certf icate of Compliance to
Product Standards
ANSI 221.75/CSA 6.27 — Connectors for Outdoor Gas Appliances
and Manufactured Homes
Scope states "...intended for exterior use above ground for making
non -rigid connection s... between the gas supply and the gas inlet
of an appliance for outdoor installation that is not frequently moved
after Installation." In addition section 1.5.4 states the connector is
designed for occasional movement after installation. Repeated bend-
ing, flexing or extreme vibration must be avoided. Normal opera-
tion of a clofhes dryer, rooftop HVAC unit or SIMILAR OUTDOOR
APPLIANCE DOES NOT constitute extreme vibration or movement.
ANSI 221.24/CSA 6.10 — Connectors for Gas Appliances
(Excluding 60/61 Series)
C us
Product Configurations
Applicable
ANSI Z223.11NF
International Fue
6149.1 —Natura
(CSA C
Uniform Mecham
Uniform Plumbin
Additional)
Commonwealth
of Plumbers and
Additional
U1 2200-2015:
Section 66B Vi'
" � E
ES -D -GAG Generator Generac
For use with Generac
stationary outdoor backup/
standby generators.
Series 30, 40 and 60
'A 54 National Fuel Gas Code Section 9.6
Gas Code (IFGC) section 411.1
Gas and Propane Installation Code
roup} Section 6.21
A Code (UMC) Section 1313.0
Cade (UPC) Section 1212.0
Massachusetts Board of State Examiners
as Fitters
ary Engine Generator Assemblies
Test.
rn
it
I In —
OL4835A CAN30-3131-1466 30 '%
5/
Y2
14
OL4836A CAN40-4141-146L 40 1 %
1
1
14
OL483EC CAMEO-6161-15GL 6_0 1'/1
1-'/
15
'CAN" prefix indWas productsupptied ImM bath 54sh am French tnft7 flons for Canada
P�lLrlJiGi4i�'.�
All installations must completely comply with all Dormant manufacturing company vvaroings
and instructions, national, state and local codes and all applicable ansi standards.
Dormont product spec ficahons in US. customary urns and metric ale approximate and are provided for reference onPy. Far precise n
monis, please corriaet 0ormonf Technical Service, Dormant reserves the dghi to change or mr diy product design, consinrc5on, spec
or materials without prior nofice and wrthout incurring any oblgaSon to make such changes and modrficatons on DorrnonP products
or nbsequentty sold. Refer to the mvnor's manual for warranty infaandan.
�tlrmone
A111I1A7MBrand
E5
Minimum Flow Capacity at Specified Pressure Drop
(Straight Length BTU/hr. NATURAL GAS, 0.64 SG, 1000 BTU/eu.ft.)
CONFIGURATION
PRESSURE
DRUP 11PICHES WATER COLUMN]
Genarac Part Number Dormant Fart plumberSEfilES Nomirraf D Nominal length
in n
i150 rrz
1 d.75 in
1.60 in 1.25 in 1.50 k
1.75 in 2lkJ,n
OL4835A CAN30-3131-14GL
30 / 14
174,500
213,500
246,500 275,500
302,000
326,000 349,000
OL4836A CAN40-4141-14GL
40 %a 14
338,500
414,500
478,500 535,000
586,000
633,OW 677,000
OL46KC CAN60-6161-156L
60 1 '/ 15 _L1,171,5001
1,434,500
1,556,500 1,852,000
2,029,000
2,181,000 2,343,000
(Straight Length BTU/hr. LP GAS, 1.55 SG, 2500 BTU/cu.it.)
CONFIGURATION
Generac Part Number Dormant Part Numder SERIES Nominal 10 Nominal Length.
O•COLUMN]
in in
0.50 in
0.75 in
n 1,56in
1.00 in 125 '0'771
7.75in 2, 00 in
OL4635A CAN30-3131-146L 30 2 14
279,200
341,600
394,400 440,$00 483,200
521,600 558,400
OL4836A CAN40 4141 145E 40 % 14
541,600
663,200
165,600 855,000 937,600
1,012,800 1,083,200
OL4826C CAN60-6161-15GL 60 1 Y 15
1,874,400
2,295,200
2,650,400 2,963,200 3,246,400
3,505,600 3,748,800
dormant pari number CAN30-3131-140L can supply a minimum of 349,000 BTU/hr.
of natural gas 0 2.00 in. water column pressure drop to the generator.
)6fmont- ---- ------
-----• ---
--------
A WATTS Brand
USA: Ta[•
BOO) 367-6668 m Fax, (724) 733-480B m Dcrrnont.com
Canada:
l: (905) 332-x#090 . Fax: (905) 332-7068 m Dormarit.ca
Latina America:
Tel: (52) 81
1001-86DO o Fax: (52) 61-8D04-7491 - Dormant.rom
-D-GAC_Generator_Generac 1651
9) 2016 Do, moot
Ideal for use as a first sta-e regulator on any acmestic size- As MV m or �S
] 5C}T container in propane gas installations requiring up to 1,513{7,000
ST[J's per hour. The regulator is factory set to reduce container
pressure to an intermediate pressure of approximately 10 PSIG.
� o
LV3403TR Over Outl t
LV3403TRV9 V4"FNPT !" FNPT 'laz" 10 PSIG �.5aa,aaa
" Maximum flow based on inlet pressure 20 PSIG higher than the reoulatorsetting ; rM delivery pressure 20% dower than
the regulator setting and delivery pressure 2{)% laver than the setting.
Provides accurate first stage regulation in two-stage caulk tank
systems. Reduce tank pressure to an intermediate pressure of 5 to 10
PSIG- Aiso used to supply high pressure burners for applications like
industrial furnaces or boilers. Also incorporated in multiple cylinder
installations.
s
Designed to reduce first stage pressure of 5 to 20 PSIG down to o �c
burner pressure, normally 11" w.c. Ideal for medium commercial
installations, multiple cylinder installations and normal domestic
loads-
LV44i33H4Y2'LV4403N6 WE _NPT
�$ 11" W.C. at 9' to 13"
EW443
3 Drill 10 PSIG w.o. Over Inlet
F. NPT Inlet
%' F NPT
= aackmquat design -
Ilk,'" Msxlrnum ffaw teased on 10 PSIG inlet and g" w.c.. delivery pressure.
1110141
)6VM03TE
LV414103 Seriies
W44 BSeAes
100 Regp Dr: Elon, NC 27244 [35A www.:egaproducts.com +i (396) 449-7707 . ",s
LV4493SFt4 '!a" F
LV4403TR4 NPT f.F.
LV4403SR9 NPT
LV4463TR9 4
F. POL
yes
"15
2,500,000
LV&4035R96
LV.0483TR96 F NPT
" When used for final stage pressure control, must either incorporate integral relief valve or separate relief vaNe shoufd he 5pedfied
in accordance
with IVFPA Pamphlet 58.
Maximum ifow based an inlet pressure 20 PSIG higher than the regulator setting
and delivery pressure 2V% tower than the
set5ng-
s
Designed to reduce first stage pressure of 5 to 20 PSIG down to o �c
burner pressure, normally 11" w.c. Ideal for medium commercial
installations, multiple cylinder installations and normal domestic
loads-
LV44i33H4Y2'LV4403N6 WE _NPT
�$ 11" W.C. at 9' to 13"
EW443
3 Drill 10 PSIG w.o. Over Inlet
F. NPT Inlet
%' F NPT
= aackmquat design -
Ilk,'" Msxlrnum ffaw teased on 10 PSIG inlet and g" w.c.. delivery pressure.
1110141
)6VM03TE
LV414103 Seriies
W44 BSeAes
100 Regp Dr: Elon, NC 27244 [35A www.:egaproducts.com +i (396) 449-7707 . ",s
Underground Gas Polyethyl ne (PE) Piping
�� Assembly & Sizing C art
th I
40,
112° GTS
.625
7.07
0.090
314" IPS
1.050
11.0
0,095
1'° CTS
U25
11.5
0.049
1"IPS
1.315
11,0
0.12[}
i -i J4" EPS
7.660
T O.O
0.166
1-1/21' EPS
1.400
13.0
0.173
2" EPS
2X5
11.0
03.216
Normal Pipe Size and SDR must be used to match finings and IPS PE pipe.
Nominal ripe Size and Min. Wall must be used to match fittings and CTS AE pipe.
All pipe shall be ASTM D2513.
Visit www.performancepipe.com for more information.
wpomovr
CHAMFER
AD OF
Palenr 4S 5.366.460.5.692.785 & 5,853,272
Gastite Division 0 1116 4ughn Parkway o Portland, TN 37148
1CHAMPERTto4-4
f
I0 OF PIPE
_ _
STUD
Cut pipe ends square. if using chornfer foal
with 1D gauge, check
for proper chamfer by
a' insertingpipe over
pp
gauge.
STEP Z TE36w 7
Clean piping thoroughlyStab pipe completely
to assure there is no lata fitting entrance,dirt; grease or ail in
assembly area.
STEP 4f s '
Chamfer end of pipe " � 3 Stab pipe completely
using Continental's ` into fjtting so that the
chamfering fool with i.p. mark on the pipe is
gauge, within 718" from the
fitting entrance.
P016Rf 4s 5.366,260,5,632,785 & 5,053,272
Ph.- 1.800,662.0208 o Fctx: 615.325.9407 a Web: www.gcastife.corn
STEP 9
Repeat steps 7 though 4 for all Con --Stab joints.
rys "u rk
To assure prop,'r assembly and to comply with 49
CFR 192 5ubprt J -Test requirements, the joint shall
be leak tested.
0
Verity the poiyethylene
Bark the stab depth by
(RE.) pipe being
lot
inserting the pipe info
assembled is the
the chamtertool and
correct sire.
marking the pipe at the
entrance as shown.
_ _
STUD
Cut pipe ends square. if using chornfer foal
with 1D gauge, check
for proper chamfer by
a' insertingpipe over
pp
gauge.
STEP Z TE36w 7
Clean piping thoroughlyStab pipe completely
to assure there is no lata fitting entrance,dirt; grease or ail in
assembly area.
STEP 4f s '
Chamfer end of pipe " � 3 Stab pipe completely
using Continental's ` into fjtting so that the
chamfering fool with i.p. mark on the pipe is
gauge, within 718" from the
fitting entrance.
P016Rf 4s 5.366,260,5,632,785 & 5,053,272
Ph.- 1.800,662.0208 o Fctx: 615.325.9407 a Web: www.gcastife.corn
STEP 9
Repeat steps 7 though 4 for all Con --Stab joints.
rys "u rk
To assure prop,'r assembly and to comply with 49
CFR 192 5ubprt J -Test requirements, the joint shall
be leak tested.
0
Maximum Capacity of PE Pipe in Cubic Feet per Hour
with a Gess Pressure of 6.0 in. WC and a Pressure Drop of 0.5 in. WC
(used an a 0.60 specific gravity gas
110
74
59
50
44
39
33
29
26
24
22
21
20
17
16
635
426
338
286
252
227
192
169
152
T39
129
120
113
100
90
823
553
438
371
326
294
249
219
197
ISO
147
156
147
129
116
1173
787
624
529
465
419
355
312
281
257
238
223
209
184
166
2108
1415
1121
950
835
752
638
561
505
452
428
400
376
331
298
2765
1900
1526
1306
1158
TU49
898
796
721
653
617
579
547
485
439
5954
3997
3166
2683
2360
2125
1801
1584
1426
K05
1209
1130
1063
935
842
E!
!
If
r!1
1
1
r
!!
s + a
'!!
9
1!!
fE
o
11
x!!
EI
13
12
10
9
8
7
6
6
6
5
5
5
4
4
76
67
60
51
45
40
37
34
32
3
29
27
26
25
24
99
87
78
66
58
52
48
44
42
3
37
35
34
32
31
141
124
111
94
83
75
68
63
59
55
53
50
46
46
44
253
222
2001
170
149
134
123
114
706
i 4
95
90
86
63
79
376
333
302
258
229
207
191
178
167
1 7
149
143
137
131
126
714
628
565
479
421
380
347
322
301
2
268
255
243
233
224
10003TUh.-1
CFH
Maximum Capacity of PE Pipe in Cubic Feet per Hour
with a Gas Pressure of 6.0 to 7.0 in. WC (1 J4 psig) and a P essure Crop of 1.0 in. WC
(based on a 0.60 specific gravity gas)
165
111
88
74
65
59
50
44
39
947
636
503
427
375
338
286
252
227
1228
824
653
553
487
438
371
327
294
1749
1174
930
788
693
624
529
465
419
3143
2110
1671
1416
1246
1122
951
836
753
4023
2765
2221
1900
1684
1526
1306
1158
1049
8878
5960
4720
4001
3519
3169
2686
2362
2127
20
17
16
114
100
90
747
129
117
210
184
166
377
331
298
547
485
439
1065
936
843
13
12
10
76
67
60
99
87
78
141
124
112
253
223
200
376
333
302
715
629
566
10
9
8
8
55
51
48
45
72
66
62
58
102
95
88
83
183
170
159
149
278
258
242
229
518
480
448
422
33
37
29
26
23
192
180
169
149
734
249
233
219
193
174
355
332
3T2
275
247
638
596
561
494
445
898
842
796
705
639
1803
1685
1566
1395
1256
7
7
7
6
6
43
41
39
37
36
55
53
50
48
46
79
75
71
69
66
141
135
128
123
718
217
207
799
191
184
399
380
363
348
334
T 0008TUh-7 CFF!
4 Gostin? Division Q 1116IVaUghn Parkway o Partfand, TN 37148
maximum Capacity of Pi= Pipe in Cuic c Feet per Hair
with a Gas Pressure of 8.0 in. WC and a Presure Drop of a.o in. vic
(based on a 0.60 specific gravity gas)
308
210
166
141
124
111
94
83
75
68
63
59
56
49
44
1773
1205
955
809
712
641
543
478
430
394
365
341
321
282
254
2298
1561
1236
1048
921
830
703
619
557
570
472
441
415
365
329
3275
2198
1741
14.76
7298
1169
991
871
785
718
665
621
585
514
463
5885
4002
3170
2686
2363
2728
1,803
1,586
1426
1307
1211
1131
1065
937
843
7290
5070
4023
3443
3052
2765
2367
2097
1900
1748
1627
1526
7442
1278
1158
16623
10940
8665
7344
5459
5816
4930
4336
3904
3573
3309
3093
2911
2560
2305
0t
r
rr
str
4451
.tt
Tubing
tt
Letigth
:tt*00
(ft)
�r
rt
rt
rr
CO
.It
37
33
30
25
22
20
18
17
16
15
14
73
13
12
12
215
189
171
145
127
113
103
96
90
84
Be
76
72
69
67
279
245
221
187
165
147
134
124
716
109
103
98
94
90
87
393
345
371
264
232
209
191
177
165
156
147
140
134
128
123
715
629
566
480
422
375
343
318
297
280
265
252
241
230
222
991
878
796
687
604
547
503
468
439
415
394
376
360
346
333
1954
7719
1548
1312
1154
7060
970
898
839
790
748
711
679
651
626
2628
2366
2DD6
1764
1589
1454
1346
1258
1'84
1121
1066
1t1003TUh= 1 CFH
Maximum Capacity of PE Pipe in Cubiceet per Hour
with ca Gas Pressure of 12.0 to 14 in. WC (1/2 psicg or fess) �nd a Pressure Drop of 6.0 in. WC
(based on a 0.60 specific gravity g s)
462
310
246
208
183
365
140
723
111
101
94
88
83
73
65
2667
1784
1413
1197
1053
946
804
707
637
583
540
504
475
417
376
3445
2313
1832
1553
1366
1230
1042
917
825
755
700
654
615
541
4909
3295
2610
2212
7946
1752
1485
1306
1776
1076
997
932
877
771
487
8821
5922
4690
3975
3496
3148
2668
2347
2114
1934
1791
1674
1576
1386
694
1248
10606
7290
5854
5010
4440
4023
3443
3052
2765
2544
2367
2227
2097
1859
1684
24918
16727
13249
11229
9877
8894
7638
6630
5970
U64
5060
4729
4451
3915
3525
It
!
tl'
t'1
tt
.tr
FSA
.It
•r
t 't
Ott
Malt
55
49
44
37
33
29
27
25
23
22
21
20
19
18
17
319
280
252
214
188
169
155
144
134
26
120
114
109
104
100
413
363
327
277
244
220
201
186
174
64
155
147
141
135
130
589
518
466
395
348
313
286
265
248
33
221
210
201
192
185
1058
930
838
710
625
562
515
477
445
419
397
377
361
345
332
1442
1278
1158
991
878
796
732
681
634
M4
573
547
524
503
485
12988
2628
2366
2DD6
1764
1589
1454
1346
1258
1'84
1121
1066
1018
976
938
100QBTUh=1 CFH
Ph: 1.800.662.0208 e Fax: 615.325.9407 a Web: www.gastife.com F3
Mcximum Capacity of PE Pipe in Cubic Feet per Hour with a Gas Pressu7re12-11 psi and a Pressure Drop a *€ 1,(l psi
(bused on 00.60 spec!R6 grovity ggsj
L iw
106
1521
526
463
417
353
311
280
6710
4504
3568
3024
2660
2395
2030
1785
1608
8687
5832
4619
3915
3443
3101
2628
2311
2081
12396
832T
6597
5586
49T3
4424
3750
3298
2970
22276
14953
11844
10038
8829
7950
6738
5927
5337
25532
17548
14092
12061
10689
9685
8289
7347
6657
62923
42239
33455
28355
24940
22458
19034
16742
15076 ]
1417 123 ill 94
83 74 68 63 . 9
5 53 50 48 46P
805 708 637 540
1042 916
475 428 391 363 339
3 9 302 287 274 263 253
56
237
221
208
183J
165
1471
1363
1273
1198
1054
949
i 05
1764
1649
1552
1365
1229
2718
2517
2352
2214
1947
1754
84
4523
4227
3979
3500
3151
5 24
5697
5345
5049
4475
4055
97
12777
11941
11239
9885
8902
1417 123 ill 94
83 74 68 63 . 9
5 53 50 48 46P
805 708 637 540
1042 916
475 428 391 363 339
3 9 302 287 274 263 253
825 699
1486 1307 T]77 998
615 554 507 469 439
678
4 3 391 372 355 340 327
2671 2349 2115 1793
790 723 670 626
7577 T420 1300 1204 1125 1059
5 9 558 530 507 485 467
3470 3076 2787 2385
2114 1915 1762 1639 1538 1453
1002 953 910 872 838
1380 1316 1261
7544 6636 5475 5064
4455 4011 3671 3400 3177 2WO
1211 1167
2831 2693 2572 2464 2368
Maximum Capacity of PE Pipe in
Cubic Feet Hour with Gas
iocouuh=1CFH
per a Pressure 015,0
psi and a Pressure Drop of 3.5 psi
y r
(based on a 0.60 specific gravity c ao
2544 1708 1353 1147
Tubing Length
1008 908 770 677 610 55
9 a0
517 483 454 400 360
74628 98T9 7777 6592
18966 12731 10084 8546
5798 5227 4425 3892 3505 32C
7 2970 2776 2613 2298 2069
27024 18141 14368 12178
7577 6769 5737 5046 4544 41
10711 9645 8775 7T90
3851 3,599 3387 2980 2683
48561 32598 25819 21883
6475 5925
19248 17332 14689 1292T 11635 106:8
5488 5128 4827 4246 3823
9861
53153 36532 29336 25108
22253 201113 17257 15294 13858 12749
9215 8673 7629 6870
11860 11128 10512 9316
137172 92082 72933 61813
54370 48959 41494 36498 32865 30018
8441
27855 26031 24500 27550 19405
�� " r �e
r� .�e
305 268 242 205
1754
180 162 148 137 128 121
114 109 104 100 96'
1543 1389 1177
I.CTS695
2274 2000 1801 1526
1036 932 853 790 739
658 626 598 573 55]
Vips 1- 2850 2566 2175
1343 1209 IT06 1025 958 901
1913 1723 7577 1460 1364
853 812 775 7x33 714
1-1143240
5822 5121 4612 3908
128
3438 3096 2833 2624 2452 230
1216 1]56 1104 1058 ]017
2185 2078
7225 6403 5802 4965
16447 14466
4401 3987 3668 3413 3202 3{72
1985 1902 1828
2873 2741 2624 2521 2429
13027 11041
9711 8745 8003 7411 69266 6519
6171 5870 5606 5372 5163
Maximum Capacii}r Of PE Pipe in Cubic Feet per Hour with a Gars Pressure
100GBi Jh=lCFH
of 1
.0 psi and a Pressure Drop of 5.0 psi
()eased on a 0.60 specific gravity gas)
IWO ° 177 7590
7399 1260 1 W 939 846 774
717 670
20291 13621 10789 9144
26309 17661
8043 7242 6738 5399 4862 4449
630 554 499
4120 3851 3624 3788 2871
13988 11856
37487 25164 19931 16893
10428 9390 7958 7000 6303 5769
14858 13380
5342 4993 4699 4133 3722
67362 45220 35816 30355
71340 9974 8982 8220
26700 24043 20377 17923 16139 14770
7612 7714 6696 5889 5303
72320 49705 39915 34162
30277 27433 23479 20809 18855 17346
13679 12783 12032 10583 9530
76137 15141 14302
190283 127734 10T171 85746
75421 67915 57550 50629 45590 41723
12676 11485
38639 36109 33987 29894 26919
sr IM
423 372 335 284
250
Y
2433 2140 ]927 7633
225 206 791 178 168
1437 1294 1184 1096 1025 964
159 151 144 138 133
3154 2775 2498 2118
4495
1863 1677 1535 1421 1328 7250
913 868 829 795 764
1184 1126 T 07 1030 990
3953 3560 3017 2654 2390 2787 2025 7893 1782
8077 7104 6397 5422 4769
1686 1604 1532 1468 1411
4294 3930 3640 3401 3201
- ` 9830 ' 8712 7894.- _07 6 '5988 5425 6991
3031___2883..2753 ...263.__2536 -
22815 20067 16070 15315 13471
4643 4357 4115
72130 11101 10281 9608 9043
3908 3729 3571 3430 3305
8561 8143 7777 7452 7162
i 000BTUh= T CFH
6 Gastite Division - 1116' ughn Parkway � Portland, TN 37748
Division
I I T6 Vaughn arkway
Portland, TN 37148
Toll Free: 1.800.662.0208
Fax: 615.325.9407
Web. www.gas- ite.corn
E-mail: acstite@ansIfi- rnm
Rev. 612016
Maximum Ccapactty of PE Pipe in Thousands of BTu per' h ur of Liquefied Petroieum Ge,s
With a Gas Pressure of 11.0 in, WCcand a Pressu Drop of 0.5 in. WC
(Based on c 1,52 specific graviiy gas
Lar 125 99 $4 74 67 56 50 45�38i MRrAM
3MM
w�
45 33 29 26
1073 720 571 484 425 383 325 286 257 235 218 204 192 169 752
I' cis 1391 934 740 627 551 497 421 370 333 305 283 264 249 219 197
4983 1331 1054 893 786 708 600 528 475 435 403 376 354 311 280
3563 2391 1894 1605 1412 1272 1078 948 854 781 723 676 636 560 504
4724 3247 2608 ,2232 1978 1792 1534 1359 1232 1133 1054 989 934 828 750
10063 6755 5357 4535 3989 3592 3044 2678 2411 2207 2044 1910
Or 7797 1587 1424
-- -
Size
i# 1 1/ •Yi it .!Y IY ri liy • /Y. -- Y[ ++ /! /. 1
22 2Q 18 15 13 12 11 14 9 9 8 8 8 7 7
129 113 102 86 76 68 63 58 54 57 48 46 44 42 40
167 147 132 112 99 89 8T 75 70 66 63 60 57 54 62
238 209 186 160 140 126 116 107 100 94 89 85 81 78 75
427 376 338 287 252 227 208 192 T80 169 160 152 146 140 134
642 569 516 441 391 354 326 303 285 269 255 244 233 224 216
7207 1061 956 810 712 642 587 544 508 478 453 431 411 394 379
Maximum Capacity of PE Pipe in Thousands of BTU per Hou of Liquefied Petroleum Geis 5168iUh-1 CFH
with a Gas Pressure of 2.0 psi crud a Pressure rvp of 1.0 psi
(based on a 1.52 specific gravily gas)
� r
s r - �
F .l
7906 1319 1045 886 779 702 595 523 471 431 399 373 351 304 278
11300 7586 6008 5092 4479 4033 3478 3007 2707 2478 2295 2144 2018 1775 1599
14652 9835 7790 6602 5807 5229 4432 3898 3510 3213 2975 2780 2617 2302 2073
20877 14414 1T 100 94c8 8275 7451 6315 5555 5002 4578 4239 3962 3729 3280 2953
37514 25163 19946 16905 14869 13389 17348 9982 8988 226 7618 7119 6700 5894 5307
43429 29848 23964 20515 18182 16474 14100 12496 11322 0417 9691 9092 8589 7612 6897
- 105963 7T 731 56339 47750 42000 37820 32054 28194 25388 23234 21517 20108 18926 16647 14990
ii Yi ,fi F. •Y/ !! •r!i '11 111 !1 it
236 207 787 158 131 125 115 106 99 93 88 84 80 771 74F
1355 1192 1073 910 800 720 659 611 571 37 508 484 462 443
425
1757 1545 T391 7179 1037 934 855 792 740 96 659 627 599 574 551
2503 2202 1983 1680 1478 1331 1218 1128 1054 2 939 893 853 818 786
4498 3956 3563 3019 2556 2391 2189 2027 1894 1783 1688 1605 1533 1469 14]2
5903 5232 4740 4057 3596 3258 2997 2788 2615 2471 2,347 2239 2144 2060 1485
12705 11175 10063 8529 7502 6755 6182 5725 5350 5 D36 4767 4535 4331 4150 3988
Maximum Capcacify of PE pipe in Thousands of RTU per Hour of Liquefied Pefroiourn G 516BT!lh=l C> fl
with a Gens Pressure of 10.0 psi and 0 Pressure Qr p of 1.0 psi
(based on a 1.52 specfmc grc ty gas)
2476 1662 1316 1116 9
81 884 749 659:6300
93 3 503 47{7 442 389 350
14234 9555 7568 6414 56c2 5080 4306 3787 10 3121 2890 2701 2542 2236 2014
18455 72388 9812 8316 7315 6587 5583 4970 "22 4 7 3747 3502 3296 2899 2611
26296 17652 13981 11849 10423 9385 7954 6997 57 6 5340 4990 4697 4131 3720
47252 31720 25123 21293 1872.9 16865 14294 12572 321 10 61 9595 8967 8440 7423 6685
53960 37087 29782 25489 22591 20469 17519 15527 068 12 43 72041 11297 10671 94588569- _ 133476 89601 70967 6OT48 52905 47640 40376 35514 980 29 67 27104 25329 2,3840 20970 18882
Tubing -
• e r
0 1
297 261 235 799 175 158744 134 725 11 171 106 107 97F 93
1707 1501 1352 1146 1008 907 830 769 719 67 640 609 582 557 536
2213 1946 1753 1485 7306 1176 1077 997 932 87 830 790 754 723 695
3153 2773 2497 2116 1862 7676 1534 1421 1328 12 0 1183 1125 1075 1030 990
5665 4983 4487 3803 3345 - 3072. 2757 2553 - ..2386- _ _22 2126 2022 - - 1931- - -1851- • 1779
7334 -600' 5890 5047 4468 4048 3724 3465 3251 3071 2916 2782 2664 2564 2466
76004 74077 12676 14743 9449 8509 7787 7212 6739 6343 6005 5712 5455 5227 5024
2S1613iUh=1CFH
Ph: 1.800,662.0208 a Pax: 615.325.9407 e Web: www,,gastite.com
GAS PIPING 114STALLAT'IONS
TABLE 402.4(26)
SCHEDULE 40 METALLIC PIPE
INTEN13ED USE
219,000
150,644
Pipe sizing between first stage (high-pressure regulator) and
PIPE SIZE (inch)
Nominal
Iz
'f,
1
I
I "/z
0 51,700
Actual 10
0,622
0.824
1.049
1.380
1.610
1 21
Length (ft)
7 40,100
70,900
145,000
Capacity in Thousands of Btu
In.
20
3,320
2,280
6,950
4,780
13,100
9,000
26,900
18,500
40,300
27,700
77,11
53,.
30
1,830
3,840
7,220
14,804
22,200
42,f
40
1,570
3,280
5,180
12,700
19,000
36,f
50
1,390
2,910
5,480
11,300
16,900
32,5
60
1,260
2,640
4,970
16,200
I5,300
29,4
70
1,160
2,430
4,570
9,386
14,100
27,1
80
1,080
2,260
4,2.54
8,730
13,100
25,2
90
100
125
1,016
956
848
2,120
2,000
1,770
3,990
3,770
3,344
8,190
7,730
6,850
12,300
11,600
10,300
23,6
22,31
19,81
150
768
1,610
3,020
6,210
9,300
17,91
175
706
1,480
2,780
'-5,710
8,560
I6,51
200
657
1,370
2,590
5,320
7,960
15,3[
250
300
350
400
450
582
528
486
452
424
1,220
2,290
"8371,580
4,710
4,270
3,930
3,650
3,430
7,060
6,400
5,880
5,470
5,140
13,61
12,3C
11,30
10,50
9,891
500
400
3,240
4,850
9,34[
550
380
795
1,506
3,070
4,610
8,87(
600
363
759
1,430
2,930
4,400
8,46C
650
347
726
1,370
2,810
4,210
8,1110
700
334
698
1,310
2,700
4,044
7,790
750
321
672
1,270
2,66a
3,944
7,s66
800
316
649
1,220
2,510
3,760
7,244
850
300
628
8,184
2,430
3,640
7,016
960
291
649
1,150
2,360
3,536
5,800
950
283
592
1,114
2,290
3,430
6,600
1,000
275
575
1,080
21230
3,330
6,420
11100
261
546
1,030
2,110
3,170
6,100
1,200
249
521
982
2,020
3,020
5,820
1,300
239
499
940
1,930
2,890
5,570
L400
229
480
903
1,850
2,780
5,350
1,500
221
4.62
870
1,790
2,680
5,160
1,600
213
446
844
1,730
2,590
4,980
1,700
206
432
813
1,670
2,5110
4,820
1,800
200
419
789
1,620
2,430
4,670
I1900
194
407
766
1,570
2,360
4,540
2,000
189
395
745
1,530
2,290
4,4I0
For SL I inch = 25.4 mm, I foot = 304.8 tnm, I pound per square inch - 6.895 kPa, Mnch water column =
I British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m'/h, I degree = 0.0174
- lNote: AU table•emries have been. zounded to three signilxcant•digits... - - - - . _ - - _ - - - _
GasUndiluted Propane
Inlet Pressure 10,0 psi
Pressure Drop 1.0 psi
Specific Gravity 1.50
second stage flow -pressure regulator).
2112 3 ' 4
97 2 469j 3,068 4.026
er Hour
10 124,000
0 85,000
219,000
150,644
446,009
306,4011
{7 68,200
12.1,01}0
246,040
0 58,400
143,000
21I,000
0 51,700
91,500
187,000
0 46,900
82,900
169,000
0 43,104
76,300
156,000
7 40,100
70,900
145,000
} 37,700
35,606
7 31,500
66,600
62,940
55,700
136,000
128,000
114,040
f 28,600
50,500
103,000
26„300
46,500
94,700
24,400
43,200
88,100
21,760
19,540
18,140
16,840
15,800
38,300
34,700
31,900
29,7061
27,900
78,100
70,800
65,100
60,600
56,800
14,900
26,390
53,700
84,100
25,000
51,000
13,500
23,900
48,600
12,900
22,800
46,600
12.400
28,946
4000
12,444
21,166
43,106
II,500
20,400
41,600
11,200
1'9,800
40,300
15,260
39,100
E10,800
£4,500
13,600
37,940
10,200
88,100
36,900
9,720
17,200
35,040
9,270
16,400
33,400
8,880
15,700
32,000
8,530
15,100
30,800
8,220
14,500
29,600
7,940
14,000
28,,600
7,680
I3,600
27,700
7,450
13,240
26,940
7,2317
12,800
26,100
7,030
I2,400 1
25,400
).2488 kPa,
rad.
50 FLORIDA BUILD)IiIG 6011E - FUEL GAS, 6th EDITION (2017)