HomeMy WebLinkAboutTank specsI20-2,000 w-,!
Finished with ArcClad"
Superior Aboveground Coating
8" dome in black plastic or galvanized steel
` dannc�'1y6 r-��eymyyyd
p C4J�d�i'.-16
Fabricated to A.5-M.E- code, Section Vlli, Division ]
Registered with the National Board
For more information
888.558.8265
S Tank Fea-
■
e
.ures;
Dual se vice options for above or under
ground applications
Option 1 Superior, ready to bury, red
oxide dL rable powder coating with black
polyeth ien dome*
Option : Aboveground option with
A.rcCl coating and an 8" steel
AGUG
All valve, -and float gauge are centered
under dc me
---------------
#Vacuum Purged
#72 liquio level outage valve orifice
s
N
W
o rOUTSME
co DIAMETER
a
F--
0
WIDTH
GENERAL SPECIFICATIONS
Conforms to the latest edition and addenda of the ASME code for
Pressure Vessels, Section Vill, Division 1. Camp lies with NFPA 58.
Rated at 250 psig from -202 F. to 125L' F. Alf tanks may be
evacuated to a full (14.7 psi) vacuum,
Vessel Finish: Coated with epoxy and red powder. (Tanks coated
with the epoxy powder roust be buried). For Aboveground use,
tanks will be coated with ArcClad, zinc rich epoxy primer and
super durable TGIC polyester topcoat.
"Applicalole federal state, or local regulations may contain specific requirements For protective co
installer are responsible far compliance with all federal state, local and NFPA Industry regulations.
continuous and uninterrupted and must comply with local, state or national code,
Water
Outside
Head
Capacity
Diameter
"type
120 wg.
24"
RIP
454.2L
609.6 mm
250 wg.
31.5"
Hemi
946.3 L
8003 mm
320 wg.
31.5"
Hemi
1,211.2 L
800.1 mm
500 wg.
37.42"
Hemi
1,892.5 L
950.5 mm
1000 wg.
40,96"
Hemi
3,785.0 L
1,040.4 rnm
All vessels dimensions are approximate.
Overall
Length
5' - 513/16"
1,671.6 mm
T - 21/2"
2,197.1 mm
8'-11314"
2,736.9 mm
9'-10"
2,99-1.2 mm
Is, -1013/16'
4,846.6 mm
For -more information
888.558.8265
Overall
Height
3' - 3/16"
919.1 mm
3' - 7106,,
1,109.6 rnm
3' - 711/16'
1.109.6 mm
4'-15/8"
1,260.4 mm
4'_53/16"
1,350.9 m m
Leg
Width
io 1/6"
257.2 mm
12 3/4"
323.9 mm
12 3/4'
323.9 mm
15"
381.0 corn
16114"
412.8 mm
OVERALL LENGTH
AR
DOME
WITHDRAWAL
VALVE
ANODE
CONNECTION
FILLET?
VALVE
NAME
PLATE
and cathodic protection. The purchaser and
dic protection is required and coating must be
Leg
Spacing
3'-0"
914.4 mm
3' - 6,j
1,066.8 mm
4' - 01/4"
1.225.6 mm
5'-0„
1,524.0 mm
9'-o"
2,743.2 mm
[duality
Weight
Full
Per
Load
Stack
245lbs.
96
12
111.1 kg.
472 lbs.
63
9
2141 kg-
5881bs.
45
9
266.7 kg.
871lbs.
30
6
395.1 kg
1,7291bs
15
5
784.3 kg.
Eng. Update: Aprll 5, 2016
Why Tanks Corrode
Underground steel tanks corrode due to an electrochemical reaction
between the tank and the surrounding soil. The process of corrosion
occurs due to small voltage differences on the steel surface that result
in the flaw of DC current from one location to another. Where current
flows from the tank into the sail corrosion occurs, This location is called
the anode in a corrosion circuit. Where currentflows from the soil to the
tank, no corrosion occurs. The progress of corrosion is determined by
the amount of current flowing between the anode and -the cathode and
whether the locations of the anode/ cathode remain constant over time.
Corrosion rates are generally higher in wet soil environments since the
conductivity of the soil promotes the flow of DO current in the corrosion
circuit.
Corrosion generally exhibits itself on underground tanks in either a
general overall rusting fir more commonly, a pitting attack Pit locations
may result from metallurgical conditions of the steel surface or soil
variations such as rocks, salts, fertilizer, moisture concentration, oxygen
concentration, etc,
Preventing Corrosion
Protecting underground
tanks from corrosion is
easily achieved by the use
of two commonly applied
protection methods:
external coating and
cathodic protection.
These two methods
are complementary
and should be used in
conjunction with the
other. An effective
external protective
coating insulates the steel from the soil environment, thus preventing
the flow of corrosion current from the anode to the cathode. An effective
external coating can protect over99% of the tanksurface area, However,
no coating is perfect, Damage from cflnstrucfion or soil stresses crease
tiny defects, which may result in accelerated corrosion at the defect,
Gathaft protection prevents corrosion at those defects by applying
GC current from an external source, forcing the tank to become
cathode. Application of sufficlent UC current to the tan kwiII prevent any
corrosion from occurring. The two general types of cathodic protection
systems are sacrificial and impressed current. Sacrificial systems are
used when the amount of current required far the protection is small,
such as in underground propane tanks. Impressed current systems
are more commonly used for large structures such as large diameter
pipelines. Electrical isolation of the tank from metallic piping systems
- - --and-electrical grounds is -critical forthe cathodic protection -systems,
effectiveness.
How ;Sacrificial Cathodic Protection Works
Sacrificial systems work by creating a galvanic connection between two
different metals The most common anode material is magnesium,
which when c upled to steel results in DC current flow from the
magnesium to he steel. The open circuit potential of steel is about
-0.50 volts referenced to a copper sulfate electrode. The open circuit
potential of m ag nesium is about -1.55V to-1.80V. By connecting the
two metals to g el her, the difference of 1 to 1.25V volts results in current
flow to the tank 1 h at overcomes the natural corrosion cells that exist an
the tank, With tl i is current available to the tank, no corrosion occurs.
Magnesium An c des
There are a va iety of anode sizes and allays used for cathodic
protection. The wo primary alloys are designed as H-1 (or A263) and
High Potential. Fhe H-1 allay is produced from recycled magnesium
and has an open circuit potential of approximately--1.55V. This alloy
is well suited for protection of underground propane tanks. The High
Potential alloy is 9% pure magnesium having an Open circuit potential
up to -1.8V. Thi alloy should be used for soil applications over 10,000
ohm -cm resfstivi v.
The two most c mmon anode sizes used for underground propane
tanks are 9 lb. anc 171b. The size designation relates to the metal weight.
10' of #12 TVV insulated wire is attached to the anodes. Anodes are
then hackfilled in a mixture of gypsum, bentonite, and sodium sulfate
to louver the ele ct ical resistance of the anode to soil. The mixture is a
low cost, no n haza rdaus, electrically conductive backfi11. The anode and
backfill is then packaged in a cotton bag and either a cardboard box or
paper bag. Actual shipping weight of these anodes with backfill is 27
Ib. and 45 lb,
Application Reco mendations
Magnesium an s can protect underground tanks in most soil
conditions. The H 1 alloy is generally very effective. The following chart
providessizeand uantftyrecommiendata risforvarioussize tanksbased
on conservative dE sign assumptions. This chart covers soil conditions
up to 10,000 ohin-centimeter resistivity. Resistivffies higher than
10,000 ohm-centmeter generally represent very dry soils. Verification
of soil resistivity c n be performed through soil analysis. Contact us
for design recom rr endatfons in locations where soil res 1 stivitie s exceed
10,000 ohm -cm, or if there is no effective external coating on the tank.
The propane servi a line from the tank to the house also must be
considered in the athodic protection design, unless the service line
is plastic. All underground steel pipe should be externally coated with
a corrosion resista t material. The service line should be electrically
isolated at the hou e with an insulating fitting or union. If service pipe
is less than 50' in I ngth, the tank anodes will provide sufficient current
to protect both tarli and pipe. For longer lengths of pipe, an additional
anode may be requ red at the house connections.
If another-m-etailic i naterial such as -copper -is -used-for service pining; - - - - - -
the pipe should be electrically isolated from the tank at the fill pipe
connection. Copp r and steel create a galvanic couple thatwiII accelerate
corrosion of the stf el tank when directly connected to copper piping.
Generally, copper pi 31ng does not require cathodic protection.
Soil Type
Fertile Soils, Clay,
Sandy Loam
Sand, Gravel, Rocky
areas
Tank Cap.
(gal.)
5 to 5000 ohm -cm
5000 to 10000 ohrn-cm
Size
(1ty.
Allay
Size
Qty.
Alloy
120
9#
1
H-1
9#
1
H-1
150
W
1
H-1
9#
1
lH-1
250
9#
1
H-1
W
2
H-1
325
9#
1
H-1
9#
2
H-1
500
17#
1
H-1
9#
2
H-1
1000
17#
2
H-1
9#
4
H-1
1500
17#
2
H-1
9#
4
1�-1
2000
17#
3
H-1
9#
$
H-1
`Based on 90% effective external coafing, 2 malff2 current density, and 30-
year Anode life.
Anode Installation
1. Determine size and quantity of anodes from application chart.
2. When a single anode is installed, it should be located near the
tank center on either side of tank.
3. When multiple anodes are installed, space them evenly around
the tank. See examples below.
7 anode 2 anodes 4 anodes
C-7)
4.Anodes are shipped in either cardboard boxes or multi -wall
paper sacks, Remove outer container and bury the cloth bagged
anode. If anode is supplied in plastic bag, remove plastic bag
before installing.
5. Install anodes approximafelytwo to three feetfrom the tank and
at feast as deep as the center line of the tank. Anodes work hest
in locations with permanent moisture, so generally the deeper
the better.
6.After placing the anode, stretch out the anode connection wire
and extend over to a connection point on the tank fill pipe.
7. Dover the anode with approximately six inches of backf ill and
pour 5 gallons of water on the anode to saturate the prepared
backfiIJ. Water is necessary to activate the anode.
8. Connect the anode wire to the tank with a low electrical
resistance connection. Examples are threaded stud on the
tank fill pipe or any accessible metallic connection point to the
tank. All connections should be coated with a moisture -proof
material.
9. Ideally, the tank connection is made in the area of the tank fill
pipe within the covered dome. With access to the anode wire,
subsequent testing of the tank can include measurement of
anode output and verification of performance,
10.Verify performance of the anode using an appropriate test
procedure.
Connection Under Dome
�1
1
Protection Testing Procedure
Equipment Nee ed: digital Voltmeter, Red Test Lead Min. 12' Long
& Black Lead Min. 2' Long, Reference Electrode (GDpperlCopper
Sulphate Half -Cell)
STEP 1: Using a d igital vo€tmeter insert the red test lead into the Volt
jack of the metal, and select the 2 or 20 volt DG scale. Clip red test
lead connector to an uncoated metallic area of the tank, preferably
to the fill pipe m ltivalve. A good solid connection is very important.
(DO NOT connect to shroud).
STEP 2: lnsertth black test lead into the Common jack on the meter,
and connect the opposite end of the lead to a charged reference
electrode (%z cell .
STEP 3: Remove protective cap from the porous plug at bottom end
of electrode. Pla a porous plug and into native soil (remove grass if
necessary) at four locations around the tank done on each side of the
tank, and one at each and of the tank). If difficulty is encountered
obtaining readings, moisten soil with water or dig % cell deeper into
the sail.
STEP 4: Record all four meter readings on an appropriate form. The
feast of all four r adings should be a minimum of-0.850v or more
negative. (Note: If any of the tour readings are below (less negative)
-0.850v then the ank is not fully protected).
Charging Reference Electrode
STEP 1: Unscre and remove porous plug end of new .reference
electrode. Add deionized or distilled water to the copper sulfate
crystals, filling electrode completely. The solution will turn blue in
color and there should always be excess crystals at the bottom of
the tube. DO NO USE TAP WATER.
STEP2: Replace orous plug end of electrode and place in an upright
position: so that e porous plug end is facing in the down position
and let stand for 1 hour before use. This will allow the porous plug
to become completely saturated before use.
Caution: Do not a r1ow electrode to contact oil, road salts, or other
substances that way contaminate the solution by absorption
through porous p #g. Do not allow electrode to freeze.
Distributed By:
11M11.50M
ES-Q-GAG Generator Generac
Job Name
Contractor
Job Location
Approval _
Engineer
Contractor'
Approval
— - Reoresenta
SKU
Dormont SupraSafell
Flexible Gas Appliance
Connectors
The flexibte connection between the gas supply and the gas inlet
of a Generac® Stationary Outdoor Backup/Standby Generator.
Features
• Operating Temperature
-40°F to 150'F (-40'0 to 65.6`C)
• Operating Pressure
MAX 0.5psi (3.45 kPa)
• Hydrostatic Burst Pressure
MIN 250psi (1725 kPa)
■ Flexible Tube Material
Annealed 304 Stainless Steel
• Flare Nut Material
Carbon Steei with Zinc Trivalent
Chromate Plating
• Flare Adapter Material
Cartoon Steel with Zinc Trivalent
Chromate Plating
CSA Group Certificate of Compliance to
Product Standards
ANSI Z21.75/CSA 6.27 — Connectors for Outdoor Gas Appliances
and Manufactured Homes
Scope states"... intended for exterior use above ground for making
non -rigid connection s... between the gas supply and the gas inlet
of an appliance for outdoor installation that is not frequently moved
after Installation." In addition section 1.5.4 states the connector is
designed for occasional movement after installation. Repeated bend-
ing, flexing.or extreme vibration must be avoided. Normal opera-
tion of a clothes dryer, rooftop HVAC unit or SIMILAR OUTDOOR
APPLIANCE ACES NOT constitute extreme vibration or movement.
ANSI Z21.24/CSA 6.10 — Connectors for Gas Appllances
(Excluding 60/61 Series} IP
c us
Product Configurations
��� .r o-
ANSI Z223.11NF
International Fue
6149.1 —Natura
(CSA C
Uniform Mechanl
Uniform Piumbin�
Additional �
Commonwealth
of Plumbers and
Additional
UL2200-2015:
Section 66B V'
For use with Generac
stationary outdoor backup/
standby generators.
Series 30, 40 and 60
'A 54 National Fuel Gas Code Section 9.6
Gas Code 0FGC) Section 411.1
Gas and Propane Installation Code
:nup) Section 6.21
A Code (UMC) Section 1313.0
Cade (UPC) Section 1212.0
Massachusetts Board of State Examiners
as Fitters
ary Engine Generator Assemblies
Test.
In in
in In
OL4835A CAN3Q$131-14GL
30 '/q %
'/z 14
OL4&36A UAW-4141-14K
40 '/ 1
'/ 14
1
OL4836C CAN50-6161-15GL.
60 1-'/, I 153
1 1-'/ 15
'CAN" prefix indimtes product supplied WM bath 6ngGsh and French instrudons fur Canada
�1l;7'lll!'l:s
All Installations must completely comply with all Dormant man ufactu dlig company warnings
and Instructions, national, state and local Codes and all applicable ansi standards.
Cormont productspac fications in US. customary units and metric ale approximate and are provided for referents onPy. For precise n
menfs, plmso contact uonnonf Technical Service. Aormont reserves the dghl to change or modily product design, construction, spec
or materials without prior nobca and without incudW any oblgadon to make such changes and modrflcatus on llormont products
or subsequently sold_ Werto the ouanor's manual forwarranty i r analbrr.
- D6-rmont*
.4MLWMBrand
Minimum Flow Capacity at Specified Pressure Drop
(Straight Length BTU/hr. NATURAL GAS, 0.64 SG, 1 DOD BTUku.ft.)
CONFIGURATION
PRESSURE
,.U. JINCHES WATER
COLUMN]
Generac Pail NumW
Dormant Fart Number
11'i ES NOminBt m
N0..n2l Length
in
rn
0 50 rn
a75 ria7246,50G
1.25 in
?.50 in
1,75 in
w m
OL4835A
CAN30-3131-146L
30 /
14
174,500
213,5fl0275,500
1302,000
326,000
349,000
OL4836A
CAN40 4141-14GL
40 %,
14
338,500
414,500
478,500 535,000
1 586,000
633,ODQ
677,000
OL4836C
CAN60-6161-15CzL
60 1'/
15
1,171,500
1,434,500
1,656,500 1,852.000
1 2,029,000
1 2,191,000
2,343,000
{Straight Length BTU/hr. LP GAS, 1.55 5G, 2500 BTUIou.ft.j
,.,•COLUMN]
fienerac Part Number
Dormont Part Number
SERlE5
Nominni 10
Nominal Length
in
in
17279;2007
0.50 in
0.75 if?
1.00 irr
T25 in
t,5a in
7.75 in
00 in
OL4635A
CAN30-3131-146L
30
2
14
341,600
394,400
440,80Q
483,200
521,600
558,400
OL4836A
CAN40-4141-14GL
40
%
14
541,E00
663,200
765,600
856,000
937,600
1,012,800 11,083,200
OL4836C
CAN60-6161-15GL
60
1 Y
15 1,874,400
2,295,200
2,650,400
2,963,200
3,246,400
3,605.600
3.748.900
Dormont part number CAN30-3131-146L can supply a minimum of 349,000 BTU/hr.
of natural gas 0 2.00 in. water column pressure drop to the generator.
D6fM0nt"------
__-_-_. ---
-----------
A, vWi" rS Brand USA: Tal; 800) 367-%M o Fax, (724) 733-4808 e l crmorrt.com
Canada: I al: (B05j 332-Q90 • Fax (905) 332-7068 a Dormam.caa
Lain America: Tel: (52) 81 1001-8600 o Fax 152) 61-80DD-7091 - Dormont.00m
ES-D-GAG_Generator_Generac 1651 Q 2016 Dormant
�42mpact First Stage Regulators LV3403TR
Ideal for use as a first stage regulator on any domestic sixeAsMF or
DOT container in propane gas installations requiring rap to I,500i 000
BTU's per hour. The regulator fs factory set to reduce container
pressure to an intermediate pressure of approxfmately I PSIG.
LV8402TR 1 aVEr Duff t
LV3403TRV9 1/4 FNPT %" F.NPT 713Z 10 PslG 1,5p0,Qfl0
9:pp
" Maximum flow based on Net pressure 20 PSIG higher than the reoalatorsettrng and delivery pressure 20% lower than
the regulator setting and delivery pressure 201A lower than the setting.
Provides accurate first stage regulation in two -stage bulk tank 6e5
systems. Reduce tank pressure to an intermediate pressure of 5 to 10 F,
PSIG. Also used to supply high pressure burners for applications like L
industrial furnaces or boilers. Also incorporated in multiple cylinder
installations.
i
LV4403SR F
5
l-5
s
3TR4 NPT ,
2
6-10
3SR9 NPT
1_5
3TR9 14
F. POL'"TR96
LLV
10 t
5-1d Yes
2,5QO,ff00
5R96
EN PT
" When used for fnal stage pressure control, must either incorporate integral relief valve or sepa"be rellef valve should be
ecifiied in accordance
with NFPA Pamphlet 58.
Maximum flow based an inlet pressure 20 PSIG hfghar than the regulator smiting
and delivery pressure 20% lower than th
set5ng-
I fk
Designed to reduce first stage pressure of 5 to 20 PSIG down to o�+
burner pressure, normalcy II" w.c. Ideal for Inedlum commercial .,
installations, multiple cylinder installations and normal domestic
loads-
it
�a
%2" F _NPT
#LrIplet
9' to t 3" ` Overinlet
314" F. NPT Dw_o.
s/a F. NPT
=ign _
Maximum flow hosed on 10 PSIG inlet and 9" w.c. delivery pressure.
` ------------
LVM03TE
LV41403 Series
II.V44038sezees
100 Rego Or. Elorr, Nr- 27244 USA www.;egopioducts.com +1 (336) 449-7707
oe!"
mb v sul"Xing Chart
Fealuring the
------ MOM, Co'"limp"WiTel Inc. DO Driscap
c --e
KO Performance -Pjps.
June 2016
112' c75
.625
7.0
0.EE000
314' IPS
1.050
11.0
01095
i"CT5
1.125
11.5
0.099
1 " IPS
1.315
11,0
1-1 14" IPS
1.660
T 0.Q
0.166
1-112" IPS
1.900
13.0
0.173
2" IPS
2.375
11.0
0.216
Normal Pipe Size crud SIR must be used to match fi dings and IPS PE pipe.
Nominal Pipe Size and Min. Wall must be used to match Mfings and CTS PE pipe.
All pipe shall be ASTiVI Q2513.
Visit www.performancepipe.com for more information.
Be OF PCIPE
Patent 4s 5,366.260,5,692,785 & 5,853,272
Gastite Division l i 16 4ughn Parkway o Porfiand, TN 37148
Verity the polyethylene
(RE-) pipe being
assembled is the
correct size.
ON -
Cut pipe ends square.
STEP Z
Clean piping thoroughiy
to assure there is no
dirt grease or oil in
assembly area.
SUP 4
Chamfer end of pipe
using Continentals
chamfering tool with LD.
gauge,
,may R
Ttl
ID OF PIPE
Patents 5.3fi6,260,5,fi42,385 a 5,853,272
Ph: 1,800,662.0208 o Fcrx: 615.325.9407 1 WGb: www.gastile.com
Dark the stab depth by
inserting the pipe info
the chamfer tool and
marking the pipe at the
entrance as shown,
if using chamfer fool
with ID gauge, check
for proper chamfer by
inserting pipe over
gauge-
STO 7
Stab pipe completely
I _ into fitting entrance.
I
19TV el
Stab pipe completely
into fitting so that the
mark on the pipe is
Within 7/8" from the
fitting entrance.
11E,P
Repeat steps T though 4 for all Can -Stab joints.
M ry u01
To assure prop r assembly and to comply with 49
CFR 192 5ubp rt J-Tesf requirements, the joint shall
be leak tested.
:3
Maximum Capacity of PE Pipe in Cubic Feet per dour
with a Gas Pressure of 6.0 in. WC and a Pressure ®rap of 0.5 in. PVC
(Based on a 0.60 specific grcrviiy gas
110
74
59
50
44
39
33
29
26
24
22
21
20
17
16
635
426
338
286
252
227
192
T69
152 1
9
129
T20
113
100
90
823
553
438
371
326
294
249
219
197 ISO
167
156
147
129
116
1173
787
624
529
465
419
355
312
281 257
238
223
209
184
166
2108
1415
1121
950
835
752
638
561
505 452
428
400
376
331
296
2765
1900
1526
1306
1158
1049
898
796
721 653
617
579
547
485
439
5954
3997
3166
2683
2360
2125
1801
1584
1426 K05
1209
1130
1063
935
842
00
►
i�
0
i
.6
it
:5
•:
e01100
i00
1309
0
0
13
12
10
9
8
7
6
6
6
5
5
5
4
4
76
67
60
51
45
40
37
34
32 3
29
27
26
25
24
99
87
78
66
58
52
48
44
42 3
37
35
34
32
31
141
124
111
94
83
75
68
63
59 56
53
50
48
46
44
253
222
200
170
149
134
123
114
706 7
o
95
90
86
83
79
376
333
302
258
229
207
191
178
167 IN
149
143
137
131
126
714
628
565
479
421
380
347
322
301 283
268
255
243
233
224
10003TUh-1
CFH
Maximum Capacity of PE Pipe in Cubic Feet per Hour
With a Gas Pressure of 6.0 to 7.0 in. WC (1 j4 prig) and a R essure D op of 1.0 in. WC
(based on a 0.60 specific gravity gas)
165
11I
88
74
65
59
50
44
39
947
636
503
427
375
338
286
252
227
1228
824
653
553
487
438
371
327
294
1749
1174
930
788
693
624
529
465
419
3143
2110
1671
1416
1246
1122
951
836
753
4023
2765
2221
1900
1684
T526
1306
1158
1049
8878
5960
4720
40GI
3519
3169
2686
2362
2127
20
17
16
114
100
90
T47
129
117
210
184
166
377
331
298
547
485
439
1065
936
843
13
12
10
76
67
60
99
87
78
Ml
124
112
253
223
200
376
333
302
715
629
566
10
9
8
8
55
51
48
45
72
66
62
58
102
95
88
83
183
170
169
149
278
258
242
229
518
480
448
422
33
37
29
26
23
192
180
169
149
134
249
233
219
193
174
355
332
3T2
275
247
638
596
561
494
445
898
842
796
705
639
1803
1685
1566
7395
1256
7
7
7
6
6
43
41
39
37
36
55
53
50
48
46
79
75
77
69
66
141
135
128
123
118
217
207
799
191
184
399
380
363
348
334
T 0008iUh-7 r-FH
4 Gastite Division a 1116 Vaughn Parkway a Portfand. TN 37148
MQx1mum Capacify of PE Pipe in Cub c Feet per Hoar
with o Gas Pressure of 8.o in. WC and a Pres pare Drop of 3.0 in. WC
(used on a 0.60 specific gravity gas)
308
210
166
141
124
117
94
83
1773
1205
955
809
712
641
543
478
2298
1561
1236
T048
921
830
703
619
3275
2198
1741
14.76
1298
1169
991
871
5885
4002
3170
2686
2363
2128
1803
1586
7290
50TO
409.3
3443
3052
2765
2367
2097
16623
10940
8665
7344
6459
5816
4930
4336
75
68
63
59
56
49
44
430
394
365
341
321
282
254
557
510
472
441
475
365
329
785
718
665
621
585
514
463
1428
1307
1211
1131
1065
937
843
1900
1748
1627
1526
7442
1278
T158
3904
3573
3309
3093
2911
2560
2305
37
33
3E]
25
22
20
18
17
16
�T®5�
lg
12
12
215
189
171
145
127
113
103
96
90
84
80
76
72
69
67
279
245
221
187
165
147
134
124
716
109
103
98
94
90
87
393
345
371
264
232
209
191
177
165
156
147
140
134
128
123
716
629
566
480
422
375
343
318
297
280
265
252
241
230
222
991
878
796
681
604
547
503
468
439
415
394
376
360
346
333
1954
17T9
1548
1312
1154
1060
970
898
839
790
748
711
679
651
626
10008TUh=1
CFH
Maximum CcaPacify of PE Pipe in Cubic eel per Hour
with a Gas Pressure of 12.0 to 14 in. WC (1 J2 psig or less) re a Pressure Drop of 6A in. WC
(based on a 0.60 specific gravity g 5)
462
370
246
208
183
165
140
123
ill
101
94
88
83
73
i65
1784
1413
1197
1053
948
804
707
637
583
540
504
475
417
376
3445
2313
1832
1553
1366
1230
1042
917
825
755
700
654
615
541
4909
3295
2610
2212
7946
1752
1485
1306
1176
1076
997
932
877
771
487
12657
8821
5922
4690
3975
3496
3148
2668
2347
2114
1934
1791
1674
1576
1386
694
1248
10606
7293
5854
5010
4440
4023
3443
3052
2765
T544
2367
2227
2097
1859
1684
24918
16727
13249
11229
9877
8894
7638
6630
5970
U64
5060
4729
4451
3915
3525
r
r
�r
,er
ar
•rr
r�
w
:rr
•aa
r r
+r
it
rrmm
55
49
44
37
33
29
27
25
23
2
21
20
19
18
17
319
280
252
214
185
169
155
144
134
26
720
114
109
104
100
413
363
327
277
244
220
201
186
174
64
155
147
141
135
130
589
518
466
395
348
313
286
265
248
33
221
210
201
192
185
1058
930
838
710
625
562
515
477
445
19
397
377
361
345
332
1442
1278
1158
991
878
796
732
681
639
34
573
547
524
503
485
472938
2628
2366
2006
7764
7589
1454
1346
1258
1
84
1121
1066
T078
976
938
180CBTUh=1 CFH
Ph: 7,800.662,0208 e Fax: 615.325.9407 o Web: www.gaslite.com 5
MQxirrrurn Capacity of PE Pipe in Cubic Feet per Hour with a Gas Pressure t 2.0 psi and a Pressure Drop of 1,0 psi
MCISed on a CAD specif6 gravitygas)
vci asa uo5 41/ 363 31T 280 56 237 22T 208 183 165
6710 4504 3568 3024 2660 2395 2030 1786 1608 1 71 1363 1273 1198 1054 949
8687 5832 4619 3915 3443 3101 2628 2311 2081 T 05 1764 1649 1552 1365 1229
12396 8321 6591 5586 49T3 4424 3750 3298 2970 2718 2517 2352 2214 1947 1754
22276 14953 11844 10038 8829 7950 6738 5927 5337 4684 4623 4227 3979 3500 3151 25532 17548 14092 12061 10689 9685 8289 7347 6657 6124 5697 5345 5049 4475 4055
62923 42239 33455 28355 24940 22458 19034 16742 15076 13797 12777 11941 11239 9885 8902
140 123 liT 94 83 74 68 63 59 5 53 5Q 48 46 44
8(}5 708 637 540 475 428 341 363 339 3 9 302 287 274 263 253
1042 916 825 699 6T5 554 507 469 439 4 3 391 372 355 340 327 1486 13(]7 T177 998 678 740 723 670 626 59 558 53Q 507 485 467
2671 2349 2TT5 1793 7577 1420 1300 1204 1125 1059 1002 953 910 872 838 3470 3076 2787 2385 2114 1915 1762 1639 1538 1453 1380 1316 T261 1211 1167 7544 6636 5975 5064 4455 4011 3671 3400 3177 2WO 2831 2693 2572 2464 2368
T OQ08TUW CFH
Maximurl Capacity of PE pipe in Cubic Feet per Hour with a Gas Pressure ol 5.0 psi and a Pressure Drop of 3,5 psi
(bmsd on a 0.60 specific gravity gas)
MIN° •° �°
2544 1708 1353 1147 1® 908 770 677 610 653 517 483 454 400 369 74628 98T9 7777 6592 5798 5227 4425 3892 3505 3217 2970 2776 2613 2298 2069 18966 12731 10084 8546 7517 6769 5737 5046 4544 41 3851 3599 3387 2298 2069 27024 18141 14368 12178 10711 9645 8775 7T90 6475 59 5488 5128 4827 4246 3823 68
485b1 32598 25819 21883 19248 17332 14689 1292T 11635 106 8 9861 9215 8673 7629 6870 53153 36532 29336 25108 22253 20163 17257 15294 13856 127 9 11860 17128 10512 9316 8441 137172 92082 72933 61813 54370 48959 41494 36498 32865 300 8 27855 26031 24500 27550 19405
E ■
et / / °° .// / 6i/ •°° /isums°° ° °t //
305 268 242 205 180 162 148 137 128 721 114 109 104 100 96 1754 1543 1389 T177 1036 932 853 790 739 695 658 626 698 573 551 2274 2000 1801 1526 1.1343 1209 1T06 1025 958 901 853 812 775 743 714 3240 2850 2666 2175 1913 1723 1577 1460 1364 1281216 1156 1104 1058 1017 5822 5121 4612 3908 =8 3096 2833 2624 2452 2302785 2078 1985 1902 T828 7225 6403 5802 4965 4401 3987 3668 3413 3202 3025 2873 2741 2624 2521 2429
16447 14466 13027 11041 9711 8745 8003 7411 6926 6519 6171 5870 5606 5372 5163
10008TUh=l CFH
Maximum Capacity of PE Pipe in Cubic Feet per Maur with a Gas Pressure of 10.0 psi and a Pressure Drop of 5.0 psi
(leased on a 0.60 specific gravity gos)
• f ■
39
0 21 2369 1877 7590 1399 1260 1068 939 S84
774 717 670 630 554 499 2429T 13621 10789 9144 8043 7242 6738 5399 4862 4449 4120 3851 3624 3188 2871 26309 T7661 13988 11856 10428 9390 7958 7000 63M 5769 5342 4993 4699 4133 3722 37487 25164 19931 16893 14858 13380 71340 9974 8982 8220 7612 7714 6696 5889 5303
67362 45220 35816 30355 26700 24043 20377 17923 16139 14770 13679 12783 12032 10593 9630 72320 49705 39915 34162 30277 27433 23479 20809 18855 17346 76137 15141 14302 12676 11485
190283 127734 10T171 85746 75421 67915 57560 50629 45590 41723 38639 36109 33987 29894 26919
SEEN., 6 ti °B °° . / aE
423 372 335 284 250 225 206 791 178 768 159 157 144 138 733
2433 2140 1927 1633 1437 1294 1184 1096 1025 964 973 868 829 795 764 3164 2775 2498 2118 1863 1677 1535 1421 1328 1250 1184 1126 1075 1030 990 4495 3953 3560 3017 2654 2390 2787 2025 7893 1782 1686 1604 1532 1468 T411
8077 7104 6397 5422 4769 4294 3930 3640 3401 3201. 30312883 - - - • -
- 9830 ' 8712 7894 6756 5988 5425 499j 4643 4357 411- - -5 3908 372.. 2753 ...263�-_ _25.36
9 3571 3480 3305
22815 20067 18070 15315 13471 12130 11101 10281 9608 9043 8561 8143 7777 7452 7162
] OOOETUh= I CFN J
6 Gastito Division ■ 11161 Ughn Parkway � Portland, TN 37148
Division
1116 Vaughn arkway
Portland, TKI 37148
Toil Free: I.800. 62.020 3
Fax: 615.325.9407
Web: www.gas ite.corn
E-n)Qii: C os—I'Ite@aas it'rnm
Rev.6/2016
Maximum CapOcity of PE Pipe in Thousands of BTU per'Holur of Liquefied Pefroieurn Gas
With a Gass Pressure of 71.0 in, VVC and a Pressur Rrap of 0.5 in. VVC
(based on ra 1.52 specific grpvify gas
s�lae�fi�
84 74 67 56 50 45 41 38 35 33 29 26
1073 720 571 484 425 383 325 286 257 235 218 204 192 169 752
1391 934 740 627 551 > 497 421 370 333 305 283 264 249 219 197
1983 1331 1054 893 786 708 600 528 475 435 403 376 354 311 280
3563 2391 1894 1605 1412 1272 1078 948 864 781 723 676 636 560 504
4724 3247 2608 2232 1978 1792 1534 1359 1232 1133 1054 989 934 828 750
10063 6755 5351 4535 3989 3592 3044 2678 241T 2207 2044 191❑ 7797 1581 1424
-
F 1 !1 tT tt .!1 !! ilt • / !t 11 It 1[ ; f
22 20 18 15 13 12 11 70 9 9 8 8 8 7 7
129 113 102 86 76 68 63 58 54 51 48 46 44 42 40
167 147 132 112 99 89 87 75 70 66 63 60 57 54 52
238 209 786 160 140 126 116 107 100 94 89 85 81 78 75
427 376 338 287 252 227 208 192 T80 169 160 152 146 140 134
642 569 516 441 391 354 326 303 285 269 255 244 233 224 216
1207 1061 966 810 712 642 587 544 508 478 453 431 411 394 379
Maximum Capacity of PE Pipe In Thousands of BTU per i-tou of Llquefisd Petroleum Gas 5168TU1�=iCFH
with a Gras Pressure of 2.0 psi and a Pressure rap of 1.0 psi
(rased an a 1.52 speciBC gravity gas)
1
�j• . a
T9b6 1319 T045 886 779 702 595 523 471 431 399 373 351 309 278-
11300 7586 6008 5092 4479 4033 3478 3007 2707 2478 2295 2744 20T8 1775 1599
14652 9835 7790 6602 5807 5229 4432 3898 3510 3213 2975 2780 2677 2302 2073
20877 14014 1T100 9408 8275 7451 6315 5555 5002 4578 4239 3962 3729 3280 2953
37514 25163 19946 16905 14869 13389 11348 9982 8988 5226 7618 7119 6700 5894 5307
43429 29848 23969 20515 18182 76474 14100 12496 11322 10417 9691 9092 8589 7612 6897
105963 7T131 56339 47750 42000 37820 32054 28194 25388 43234 21517 20108 18926 76647 14990
It Will •!t i} •tI F! 1!1
236 2(}7 787 158 139 125 175 106 49 93 88 84 80 77x �4+
1355 1192 1073 910 800 720 659 671 571 37 508 484 462 443 425
1757 1545 T391 7179 1037 934 855 792 740 96 659 627 599 574 551
2503 2202 1983 1680 1478 1331 1218 1128 1054 2 939 893 853 818 786 4498 3956 3563 3019 2656 2391 2189 2027 1894 i783 1688 1606 1533 1469 1412
5903 5232 4740 4057 3596 3258 2997 2788 2616 71 2347 2239 2144 2060 7485
12705 11175 10063 8529 7502 6755 6182 5725 5350 5 D36 4767 4535 4331 4150 3988
Maximum CoPcroity of PC pipe in Thousands of BTU per Hour of Liquefred Pefroleum Ga2516BT!lh-1 CFFI
with a Gas Pressure of 10.0 psi and a Pressure Pr p of 1.[1 psi
(based on a 1.52 spe�i5c gravity gas)
■ • - ■
1 1
2476 1662 7316 1114 981 884 749 b59 593 1 •+ It
14234 9555 7568 6414 5642 5080 4306 3787 3410 3121 2890 2707 2542 2236 2014
18455 72388 9812 8316 7315 6587 5583 4970 4422 4 7 3747 3502 3296 2899 2611
26296 17652 13983 11849 10423 9385 7954 6997 6300 57 6 5340 4990 4697 4131 3720
47252 31720 25123 21293 1872-9 16865 14294 12572 17321 10 6T 9595 8967 8440 7423 6685
53960 37087 29782 25489 22591 20469 17519 15527 14W 12 43 T2041 11297 10671 9458 8569
133476 89601 70967 60T48 52905 47640 40376 35514 31980 29 67 27104 25329 23840 20970 18882
• ■ r
!t 1 t! Tt !1 .!t 11 !1 •1! [ t 1
297 261 235 799 i75 158 744 134 T25 11 171 106 101 97 93
1707 1501 1352 1146 1008 907 830 769 719 67 640 609 582 557 536
2213 1946 1753 1485 7306 1176 1077 997 932 87 830 790 754 723 695
3153 2773 2497 2116 1862 7676 1534 1421 1328 12 0 1183 7125 1075 1030 990
5665 4983 4487 3803 3345 504T 3272_ 2757 2553-. 2386_.._22 2726 7332{322 1937- -1851 1779
4 65�t] 5890 4468 4048 3724 3465 3251 3071 2976 2782 2664 2560 2466
T6004 14077 12676 10743 9449 8589 7787 7212 6739 634 6005 5712 5455 5227 5024
25168TUh-]CFH
Ph: 1,800,662.02198 o Fax: 615.325.9407 e Web: www.gastife.com
GAS PIPING INSTALLATIONIS
TABLE 402.4(25)
SCHEDULE 40 METALLIC PIPE
Gas I Undiluted Propane I
inlet pressure 10.0 P;
Pressure Drop 1.0 psi
Specific Gravity I.50
11VT hiI]E0 ti8>
Pipe sizing between firsP stage {high-pressure regulator) and
PIPE SIZZE (inch)
second stage (low-pressure regulator).
Narninal
14
314
1
1'J4
1%
2yZ
3
4
Actual10
0.622
0.824
i.049
i.380
1.610
2.0
7 2469
3A&8
4.026
Length (ft)
Capacity in Thousands
of Btu
er Hour
10
20
3,320
2,290
61950
4,780
13,1OQ
9,400
26,900
18,500
44,3Q0
27,700
77,
53,
00 124,000
0 85,000
219,(H10
150,000
446,000
346,fl00
30
I.830
3,844
7,220
14,804
22,200
42,8
68,200
121,000
246,OQE1
40
I,570
3 28fl
5,1$4
12,7QQ
19,000
3b,
0 58,400
IQ3,000
21I,400
50
1,390
2,910
5,480
11,300
16,900
32,5)0
51,700
91,500
i87,000
60
1,2,50
2,640
4,970
10,200
15,300
29,
0 46,900
82,900
169,000
70
1,160
2,430
4,570
9,380
14,1D0
27,1
0 43.100
76,300
156,000
80
1,080
2,260
4,25Q
8,730
13,100
25,2)0
40,100
70,900
145,000
90
100
125
1,010
956
848
2,120
2,000
I,770
3,990
3,770
3,340
8,190
7,730
6,8SD
12,300
11,600
10,300
23,
22,3
19,8(0
0 37,700
0 3500
31 500
66,600
62,900
55,700
14000
128,40{]
114,000
150
768
1,610
3,020
6,210
9,300
17.9(0
28,600
50,500
103,000
175
706
1,480
2,780
�3,710
8,560
I6
26„300
46,500
94,700
200
657
1,370
2,590
5,320
7,960
15,3
24,400
43,200
88,100
250
300
350
400
450
582
528
486
452
424
I,220
1,100
I,024
945
886
2,290
1 2,080
1,9f0
I,780
L670
4,7Ifl
4,270
3,930
3,650
3,430
7,06D
6,440
5,880
5,470
5,140
13,60
i2,30
11,3
14 50
9,890
21,700
19,600
18,I00
16,804
15,8DD
38,300
34,700
31,900
29,7Q0
27,900
78,100
74,800
65,100
60,600
56,800
500
400
837
1,580
3,240
4,950
9,340
14,900
26,300
53,700
550
380
795
1,500
3,070
4,610
81870
14,100
25,000
51,000
600
363
759
1,430
2.930
4,400
9,460
13,500
23,900
41,611,
650
347
726
1,370
2,810
4,210
81110
12,900
22,900
46,600
700
334
699
L310
2,700
4,040
7,7901
112.400
21,900
44,800
750
321
672
1,270
2,600
3,900
7,500
1 12,000
21,inn
43,140
900
310
649
1,220
2,510
3,760
7,2401
1 11,504
2D,400
41,600
850
300
628
11180
2,430
3,640
7,OIfl
11?OD
19,800
4ff,300
900
291
609
1,150
2,360
3,530
6,800
10,800
19,200
39,10O
950
283
592
1,I10
2,290
3,430
6,640
10,500
18,600
37,900
I,000
275
575
1,080
2,230
3,330
6,420
10,200
18,I00
36,900
11100
261
546
1,030
2,110
3,170
6,100
9,720
17,200
35,000
1,200
249
521
982
2,020
3,020
5,820
9,270
16,400
33,400
1,300
239
499
940
1,930
2,990
5570
8,880
15,700
32,000
L400
229
480
903
1,850
2,780
5,350
8,530
15,100
30,801)
1,500
221
462
371
1,790
2,680
5,16D
8,220
14,500
29,600
1,600
213
446
$40
1,730
2,590
4,980
7.940
14,000
29,600
1,700
206
432
813
1,670
2,50f)
4,320
7,690
I3,600
27,700
1,800
200
419
789
1,620
2,430
4,670
7,450
13,200
26,900
I1900
194
447
766
1.570
2�360
4,540
7,230
12,800
26,100
2,000
189
395
745
1,530
2,290
4,4IQ
7,030
I2,400
25,400
p'or S'1: 1 inch = 25A mm, 1 foot = 304.8 mm, I pound per square inch = 6.895 kpa, 1-inch water column = 0.2488 kPa,
1 Biitish thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0,0293 ni'Ih, I degree = 0. 0 1741 rad.
Note: A it tableeentries have been rounded La drree significant•digits. • .. _ . _ .. - ....
50 FLORIDA BUILDING CODE - FUEL GAS, 6th EDITION (2017)
J