Loading...
HomeMy WebLinkAboutTank specs120-2,000 ',lt1g Finished with r tad.. Superior Aboveground Coating 8" dome in black plastic or galvanized steel 1 C�l��4CJ4 Fabricated to A.5-M,E- code. Section VIII, Division ] F Registered with the National Board For more information 888.558.8255 $ Tank Fey s e ED Dual se vice options for above or under ground applications Option 1: Superior, ready to bury, red oxide dL cable powder coating with black polyethN len dome* Option - Aboveground option with ArcClad coating and an 8° steel AGUG d me All valve and float gauge are centered under dc me _ _ . _ .. . #Vacuu 4 � Purged #72 liqui level outage valve orifice IN 111111111111 111 011 Aortae, # OVERALL LENGTH Dour; s = I C7 yr I II I II LU w I II I( in OUTSIDE I I p LU a DIAMETER I II o D o I II I LEG WIDTH LEG SPA C1 NG WITHDRAWAL r-- VALVE GENERAL SPECIFICATIONS FLDA GUA % DYKE � _ ANODE E gyp• stis CONNELTIdtd Conforms to the latest edition and addenda of the ASME code for FILLER Pressure Vessels, Section VII€, Division 1. Camp lies with NFPA 58. f � � � VALVE Rated at 2501 psig from -202 F. to 1252 F. All tanks may be evacuated to a full (14.7 psi) vacuum. Vessel Finish: Coated with epoxy and red powder. (Tanks coated MULTiv p Y p ve - ""'`" PLATE with the epoxy powder must be buried). For Aboveground use, -- `- tanks will be coated with ArcClad zinc rich epoxy primer and pE super durable TGIC polyester topcoat. 'Applicable federal, state, or local regulations may contain specific requirements for protective coati igs and cathodic protection. The purchaser and installer are responsible for compliance with all federal state, local and NFPA industry regulations. Cathodic protection is required and coating must be continuous and uninterrupted and must comply with local, state or national code. AGUG VESSEL DIMENSIONAL i ■ Water Outside Head Overall overall Leg Leg Capacity Diameter "type Length Height Width Spacing Weight 120 wg- 24" Ellip 5' - 513/16" 3' - 3/16" 101/8" 3'-o" 245 lbs. 7aM 454.2L 609:6 mm 1,671.6 mm 919.1 mm 257.2 mm 914.4 mm 117.1 kg.250 wg. 31.5" Hemi T- 2112" 3' - 711/16" 12 3/4" 3' - 6" 472 lbs. 946.3 L 800.1 mm 2,197.1 mm 1,109.6 rnm 323.9 mm 1,066.8 mm 214.7 kg - 320 wg. 31.5" Hemi 8'- 113/4" 3' - 711/16" 12 3/4" 4' - 01/4" 588 lbs. 45 9 1,211.2 L 800.1 mm 2.736.9 mm 1.109.6 mm 323.9 mm 7,225.6 mm 266.7 kg. 500 wg. 37.42" Hemi 9` -10" 4' -15/8" 15" T - 0" 871 lbs. 30 6 1,892.5 L 950.5 mm 2,9972 mm 1,260.4 mm 381.0 mm 1,524.0 mrn 395.1 kg 1000 wg. 40:96" Hemi 15-1013/16" 4'- 5 3/16" 161/4" 9'- 0" 1,729 lbs 15 5 3,785.0 L 1,040.4 mm 4,846.6 mm 1,350.9 mm 412.8 mm 2,743.2 mm 784.3 kg. All vessels dimensions are approximate. For more information 888.558.8285 Eng, Update: April 5, 2016 Why Tanks Corrode Underground steel tanks corrode due to an electrochemical reaction between the tank and the surrounding soil. The process of corrosion occurs due to small voltage differences on the steel surface that result in the flow of DC current from one location to another. Where current flows from the tank into the soil corrosion occurs. This location is called the anode in a corrosion circuit. Where currentflows from the soil to the tank, no corrosion occurs. The progress of corrosion is determined by the amount of current flowing between the anode and -the cathode and whether the locations of the anode/ cathode remain constant over time. Corrosion rates are generally higher in wet soil environments since the conductivity of the soil promotes the flow of DO current in the corrosion circuit. Corrosion generally exhibits itself on underground tanks in either a general overall rusting or more commonly, a pitting attack. Pit locations may result from metallurgical conditions of the steel surface or soil variafions such as rocks, salts, fertilizer, moisture concentration, oxygen concentration, etc. Preventing Corrosion Protecting underground tanks from corrosion is easily achieved bythe use of two commonly applied protection methods: external coating and cathodic protection. These two methods are complementary and should be used in conjunction with the other. An effective external protective coating insulates the steel from the soil environment, thus preventing the flow of corrosion current from the anode to the cathode. An effective external coating can protect over 99% of the tan ksurface area. However, no coating is perfect. Damage from construction or soil stresses create tiny defects, which may result in accelerated corrosion at the defect. Cathodic protection prevents corrosion at those defects by applying DC current from an external source, forcing the tank to became cathode. Application of sufficient DC current to the tank will prevent any corrosion from occurring. The two general types of cathodic protection systems are sacrificial and impressed current. Sacrificial systems are used when the amount of current required for the protection is small, such as in underground propane tanks. Impressed current systems are more commonly used for large structures such as large diameter pipelines. Electrical isolation of the tank from metallic piping systems - - _ -and-electrical grounds is -critical for the cathodic protection -system's effectiveness. How Sacrificial Cathodic Protection ►Forks Sacrificial systems work by creating a galvanic connection between two different metals The most common anode material is magnesium, which when coupled to steel results in DC current flow from the magnesium to 1he steel. The open circuit potential of steel is about -0.50 volts referenced to a copper sulfate electrode. The open circuit potential of mac nesium is about -1.5511 to -1.80V. By connecting the two metals toga her, the difference of 1 to 1.25V volts results in current flow to the tank hat overcomes the natural corrosion cells that exist on the tank. With this current available to the tank, no corrosion occurs. Magnesium An c des There are a va iety of anode sizes and allays used for cathodic protection. The wo primary alloys are designed as H-1 (or AZ63) and High Potential. he H-1 alloy is produced from recycled magnesium and has an open circuit potential of approximately --1.55V. This alloy is well suited for protection of underground propane tanks. The High Potential alloy is 9% pure magnesium having an open circuit potential up to -1.$V. This alloy should be used for soil applications over 10,000 ohm -Gm resisthfi . The two most c moron anode sizes used for underground propane tanks are 9 lb. anc 171b. The size designation relates to the metal weight. 10' of #12 TVV i sulated wire is attached to the anodes. Anodes are then backfilled in a mixture of gypsum, hentonite, and sodium sulfate to lower the electrical resistance of the anode to soil. The mixture is a low cost, nonhazardous, electrically conductive backfill. The anode and backfill is then packaged in a cotton bag and either a cardboard box or paper bag. Actual shipping weight of these anodes with backfill is 27 Ib. and 45 ib, Application Regio mendations Magnesium ano es can protect underground tanks in most soil conditions. The H-1 alloy is generally veryeffective. The following chart providessizeand uan%recommendationsfor various sizetanksbased on conservative dE sign assumptions. This chart covers soil conditions up to 10,000 oh -centimeter resistivity. Resistivities higher than 10,000 ohm-centmeter generally represent very dry soils. Verification of soil resistivity cin be performed through soil analysis. Contact as for design recommendations in locations where soil resistivities exceed 10,000 ohm -cm. o r if there is no effective external coating on the tank. The propane servi a line from the tank to the house also must be considered in the athodic protection design, unless the service line is plastic. All underground steel pipe should be extemally coated with a corrosion resista t material. The service line should be electrically isolated at the hou e with an insulating fitting or union. If service pipe is less than 50' in € ngth, the tank anodes will provide sufficient current to protect both tan and pipe. For longer lengths of pipe, an additional anode may be raga red at the house connections. If another -metallic i naterial such as -copper -is -used-for service piping; - - - - - - the pipe should be electrically isolated from the tank at the fill pipe connection. Copper and steel Greats a galvanic couple that will accelerate corrasion of the steel tank when directly connected to copper piping. Generally, copper pi jing does not require cathodic protection. Soil Type Fertile Soils, Clay, Sandy Loam Sand, Gravel, Rocky Areas Tank Cap. 5 to 5000 ahm-cm 50011 to 10000 ohm -cm (9a1.) Size Oty. Alloy Size Qty. Alloy 120 9# 1 H-1 9# 1 H-1 150 9# f H-1 9# t H-1 250 9# 1 H-1 9# 2 H-1 325 9#1 H-1 9# 2 H-1 500 174 1 F1'-1 9# 2 H-1 1000 17# 2 H-1 9# 4 H-1 1500 17# 2 H-1 9# 4 H-1 2000 17# 3 H-1 9# 6 H-1 *Based on 90% effective external coating, 2 malt/ current density, and 30- yearAnode fife. Anode Installation 1. Determine size and quantity of anodes from application chart. 2. When a single anode is installed, it should be located near the tank center on either side of tank. 3.When multiple anodes are installed, space them evenly around the tank. See examples below. 1 anode 2 anodes 4 anodes =-4, k jc. C':_� (777) c7D 4.Anodes are shipped in either cardboard boxes or multi -wall paper sacks. Remove outer container and bury the cloth bagged anode. If anode is supplied in plastic bag, remove plastic bag before installing. 5. Install anodes approximately two to three feetfrom the tank and at least as deep as the center line of the tank. Anodes work best in locations with permanent moisture, so generally the deeper the better. S.After placing the anode, stretch out the anode connection wire and extend over to a connection paint on the tank fill pipe. 1. cover the anode with approximately six inches of backfill' and pour 5 gallons of water on the anode to saturate the prepared backfill. Water is necessary to activate the anode. 8. Connect the anode wire to the tank with a low electrical resistance connection. Examples are threaded stud on the tank till pipe or any accessible metallic connection point to the tank. All connections should be coated with a moisture-proot material. 9. Ideally, the tank connection is made in the area of the tank fill pipe within the covered dome. With access to the anode wire, subsequent testing of the tank can include measurement of anode output and verification of performance. 10.Verify performance of the anode using an appropriate test procedure. Connection Under Dome Protection Testing Procedure Equipment Nee ed: digital Voltmeter, Red Test Lead Min. 12' Long & Black Lead Min. 2' Lang, Reference Electrode (GopperlGopper Sulphate Half -C II) STEP 1: Using a igital voltmeter insert the red test lead into the Holt jack of the meter and select the 2 or 20 volt DC scale. Clip red test lead connector to an uncoated metallic area of the tank, preferably to the fill pipe m ltivalve. A good solid connection is very important. (DD NOT connect to shroud). STEP 2: insertth black test lead into the Common jack on the meter, and connect the opposite end of the lead to a charged reference electrode M cell . STEP 3: Remove protective cap from the porous plug at bottom end of electrode. Pla a porous plug and into native soil (remove grass if necessary) atfour locations around the tank (one on each side of the tank, and one at each and of the tank). If difficulty is encountered obtaining readings, moisten soil with water or dig Y2 cell deeper into the sail. STEP 4: Record all four meter readings on an appropriate form. The feast of all four r actings should be a minimum of -0.850v or more negative. {Note: If any of the four readings are below (less negative) -0.850v then the tank is not fully protected}. Charainq Reference Electrode STEP 1: Unscre and remove porous plug end of new reference electrode. Add deionized or distilled water to the copper sulfate crystals, filling electrode completely. The solution will turn blue in calor and there should always be excess crystals at the bottom of the tube. DO NO USE TAP WATER. STEP 2: Replace orous plug end of electrode and place in an upright position so that e porous plug end is facing in the down position and let stand for 1 hour before use. This will allow the porous plug to become completely saturated before use. Caution: Do nota r1ow electrode to contact oil, road salts, or other substances that may contaminate the solution by absorption through porous p ,ug. Do not a#law electrode to freeze. Distributed By: .1.- . - - .. .. . .I - - - . - - - _ - - - - - - 1112o11.50W Job Name Contractor Job Location Approval _ Engineer Contractor' Approval - - Renresenta SKU Dormant Supr=Safell Flexible Gas Appliance Connectors The flexible connection between the gas supply and the gas inlet of a GeneracP Stationary Outdoor Backup/Standby Generator. Features • Operating Temperature -40-F to 150-F (-40-C to 65.6`C) ■ Operating Pressure MAX 0.5psi (3.45 kPa) • Hydrostatic Burst Pressure MIN 250psi (1725 kPa) • Flexible Tube Material Annealed 304 Stainless Steel • Flare Nut Material Carbon Steel with Zinc Trivalent OL4836A CAN40-4141-146L 40 1 % Chromate Plating • Flare Adapter Material Carbon Steel with Zinc Trivalent OL483EC CAMEO-6161-15GL 6_0 1'/1 Chromate Plating CSA Group Certf icate of Compliance to Product Standards ANSI 221.75/CSA 6.27 — Connectors for Outdoor Gas Appliances and Manufactured Homes Scope states "...intended for exterior use above ground for making non -rigid connection s... between the gas supply and the gas inlet of an appliance for outdoor installation that is not frequently moved after Installation." In addition section 1.5.4 states the connector is designed for occasional movement after installation. Repeated bend- ing, flexing or extreme vibration must be avoided. Normal opera- tion of a clofhes dryer, rooftop HVAC unit or SIMILAR OUTDOOR APPLIANCE DOES NOT constitute extreme vibration or movement. ANSI 221.24/CSA 6.10 — Connectors for Gas Appliances (Excluding 60/61 Series) C us Product Configurations Applicable ANSI Z223.11NF International Fue 6149.1 —Natura (CSA C Uniform Mecham Uniform Plumbin Additional) Commonwealth of Plumbers and Additional U1 2200-2015: Section 66B Vi' " � E ES -D -GAG Generator Generac For use with Generac stationary outdoor backup/ standby generators. Series 30, 40 and 60 'A 54 National Fuel Gas Code Section 9.6 Gas Code (IFGC) section 411.1 Gas and Propane Installation Code roup} Section 6.21 A Code (UMC) Section 1313.0 Cade (UPC) Section 1212.0 Massachusetts Board of State Examiners as Fitters ary Engine Generator Assemblies Test. rn it I In — OL4835A CAN30-3131-1466 30 '% 5/ Y2 14 OL4836A CAN40-4141-146L 40 1 % 1 1 14 OL483EC CAMEO-6161-15GL 6_0 1'/1 1-'/ 15 'CAN" prefix indWas productsupptied ImM bath 54sh am French tnft7 flons for Canada P�lLrlJiGi4i�'.� All installations must completely comply with all Dormant manufacturing company vvaroings and instructions, national, state and local codes and all applicable ansi standards. Dormont product spec ficahons in US. customary urns and metric ale approximate and are provided for reference onPy. Far precise n monis, please corriaet 0ormonf Technical Service, Dormant reserves the dghi to change or mr diy product design, consinrc5on, spec or materials without prior nofice and wrthout incurring any oblgaSon to make such changes and modrficatons on DorrnonP products or nbsequentty sold. Refer to the mvnor's manual for warranty infaandan. �tlrmone A111I1A7MBrand E5 Minimum Flow Capacity at Specified Pressure Drop (Straight Length BTU/hr. NATURAL GAS, 0.64 SG, 1000 BTU/eu.ft.) CONFIGURATION PRESSURE DRUP 11PICHES WATER COLUMN] Genarac Part Number Dormant Fart plumberSEfilES Nomirraf D Nominal length in n i150 rrz 1 d.75 in 1.60 in 1.25 in 1.50 k 1.75 in 2lkJ,n OL4835A CAN30-3131-14GL 30 / 14 174,500 213,500 246,500 275,500 302,000 326,000 349,000 OL4836A CAN40-4141-14GL 40 %a 14 338,500 414,500 478,500 535,000 586,000 633,OW 677,000 OL46KC CAN60-6161-156L 60 1 '/ 15 _L1,171,5001 1,434,500 1,556,500 1,852,000 2,029,000 2,181,000 2,343,000 (Straight Length BTU/hr. LP GAS, 1.55 SG, 2500 BTU/cu.it.) CONFIGURATION Generac Part Number Dormant Part Numder SERIES Nominal 10 Nominal Length. O•COLUMN] in in 0.50 in 0.75 in n 1,56in 1.00 in 125 '0'771 7.75in 2, 00 in OL4635A CAN30-3131-146L 30 2 14 279,200 341,600 394,400 440,$00 483,200 521,600 558,400 OL4836A CAN40 4141 145E 40 % 14 541,600 663,200 165,600 855,000 937,600 1,012,800 1,083,200 OL4826C CAN60-6161-15GL 60 1 Y 15 1,874,400 2,295,200 2,650,400 2,963,200 3,246,400 3,505,600 3,748,800 dormant pari number CAN30-3131-140L can supply a minimum of 349,000 BTU/hr. of natural gas 0 2.00 in. water column pressure drop to the generator. )6fmont- ---- ------ -----• --- -------- A WATTS Brand USA: Ta[• BOO) 367-6668 m Fax, (724) 733-480B m Dcrrnont.com Canada: l: (905) 332-x#090 . Fax: (905) 332-7068 m Dormarit.ca Latina America: Tel: (52) 81 1001-86DO o Fax: (52) 61-8D04-7491 - Dormant.rom -D-GAC_Generator_Generac 1651 9) 2016 Do, moot Ideal for use as a first sta-e regulator on any acmestic size- As MV m or �S ] 5C}T container in propane gas installations requiring up to 1,513{7,000 ST[J's per hour. The regulator is factory set to reduce container pressure to an intermediate pressure of approximately 10 PSIG. � o LV3403TR Over Outl t LV3403TRV9 V4"FNPT !" FNPT 'laz" 10 PSIG �.5aa,aaa " Maximum flow based on inlet pressure 20 PSIG higher than the reoulatorsetting ; rM delivery pressure 20% dower than the regulator setting and delivery pressure 2{)% laver than the setting. Provides accurate first stage regulation in two-stage caulk tank systems. Reduce tank pressure to an intermediate pressure of 5 to 10 PSIG- Aiso used to supply high pressure burners for applications like industrial furnaces or boilers. Also incorporated in multiple cylinder installations. s Designed to reduce first stage pressure of 5 to 20 PSIG down to o �c burner pressure, normally 11" w.c. Ideal for medium commercial installations, multiple cylinder installations and normal domestic loads- LV44i33H4Y2'LV4403N6 WE _NPT �$ 11" W.C. at 9' to 13" EW443 3 Drill 10 PSIG w.o. Over Inlet F. NPT Inlet %' F NPT = aackmquat design - Ilk,'" Msxlrnum ffaw teased on 10 PSIG inlet and g" w.c.. delivery pressure. 1110141 )6VM03TE LV414103 Seriies W44 BSeAes 100 Regp Dr: Elon, NC 27244 [35A www.:egaproducts.com +i (396) 449-7707 . ",s LV4493SFt4 '!a" F LV4403TR4 NPT f.F. LV4403SR9 NPT LV4463TR9 4 F. POL yes "15 2,500,000 LV&4035R96 LV.0483TR96 F NPT " When used for final stage pressure control, must either incorporate integral relief valve or separate relief vaNe shoufd he 5pedfied in accordance with IVFPA Pamphlet 58. Maximum ifow based an inlet pressure 20 PSIG higher than the regulator setting and delivery pressure 2V% tower than the set5ng- s Designed to reduce first stage pressure of 5 to 20 PSIG down to o �c burner pressure, normally 11" w.c. Ideal for medium commercial installations, multiple cylinder installations and normal domestic loads- LV44i33H4Y2'LV4403N6 WE _NPT �$ 11" W.C. at 9' to 13" EW443 3 Drill 10 PSIG w.o. Over Inlet F. NPT Inlet %' F NPT = aackmquat design - Ilk,'" Msxlrnum ffaw teased on 10 PSIG inlet and g" w.c.. delivery pressure. 1110141 )6VM03TE LV414103 Seriies W44 BSeAes 100 Regp Dr: Elon, NC 27244 [35A www.:egaproducts.com +i (396) 449-7707 . ",s Underground Gas Polyethyl ne (PE) Piping �� Assembly & Sizing C art th I 40, 112° GTS .625 7.07 0.090 314" IPS 1.050 11.0 0,095 1'° CTS U25 11.5 0.049 1"IPS 1.315 11,0 0.12[} i -i J4" EPS 7.660 T O.O 0.166 1-1/21' EPS 1.400 13.0 0.173 2" EPS 2X5 11.0 03.216 Normal Pipe Size and SDR must be used to match finings and IPS PE pipe. Nominal ripe Size and Min. Wall must be used to match fittings and CTS AE pipe. All pipe shall be ASTM D2513. Visit www.performancepipe.com for more information. wpomovr CHAMFER AD OF Palenr 4S 5.366.460.5.692.785 & 5,853,272 Gastite Division 0 1116 4ughn Parkway o Portland, TN 37148 1CHAMPERTto4-4 f I0 OF PIPE _ _ STUD Cut pipe ends square. if using chornfer foal with 1D gauge, check for proper chamfer by a' insertingpipe over pp gauge. STEP Z TE36w 7 Clean piping thoroughlyStab pipe completely to assure there is no lata fitting entrance,dirt; grease or ail in assembly area. STEP 4f s ' Chamfer end of pipe " � 3 Stab pipe completely using Continental's ` into fjtting so that the chamfering fool with i.p. mark on the pipe is gauge, within 718" from the fitting entrance. P016Rf 4s 5.366,260,5,632,785 & 5,053,272 Ph.- 1.800,662.0208 o Fctx: 615.325.9407 a Web: www.gcastife.corn STEP 9 Repeat steps 7 though 4 for all Con --Stab joints. rys "u rk To assure prop,'r assembly and to comply with 49 CFR 192 5ubprt J -Test requirements, the joint shall be leak tested. 0 Verity the poiyethylene Bark the stab depth by (RE.) pipe being lot inserting the pipe info assembled is the the chamtertool and correct sire. marking the pipe at the entrance as shown. _ _ STUD Cut pipe ends square. if using chornfer foal with 1D gauge, check for proper chamfer by a' insertingpipe over pp gauge. STEP Z TE36w 7 Clean piping thoroughlyStab pipe completely to assure there is no lata fitting entrance,dirt; grease or ail in assembly area. STEP 4f s ' Chamfer end of pipe " � 3 Stab pipe completely using Continental's ` into fjtting so that the chamfering fool with i.p. mark on the pipe is gauge, within 718" from the fitting entrance. P016Rf 4s 5.366,260,5,632,785 & 5,053,272 Ph.- 1.800,662.0208 o Fctx: 615.325.9407 a Web: www.gcastife.corn STEP 9 Repeat steps 7 though 4 for all Con --Stab joints. rys "u rk To assure prop,'r assembly and to comply with 49 CFR 192 5ubprt J -Test requirements, the joint shall be leak tested. 0 Maximum Capacity of PE Pipe in Cubic Feet per Hour with a Gess Pressure of 6.0 in. WC and a Pressure Drop of 0.5 in. WC (used an a 0.60 specific gravity gas 110 74 59 50 44 39 33 29 26 24 22 21 20 17 16 635 426 338 286 252 227 192 169 152 T39 129 120 113 100 90 823 553 438 371 326 294 249 219 197 ISO 147 156 147 129 116 1173 787 624 529 465 419 355 312 281 257 238 223 209 184 166 2108 1415 1121 950 835 752 638 561 505 452 428 400 376 331 298 2765 1900 1526 1306 1158 TU49 898 796 721 653 617 579 547 485 439 5954 3997 3166 2683 2360 2125 1801 1584 1426 K05 1209 1130 1063 935 842 E! ! If r!1 1 1 r !! s + a '!! 9 1!! fE o 11 x!! EI 13 12 10 9 8 7 6 6 6 5 5 5 4 4 76 67 60 51 45 40 37 34 32 3 29 27 26 25 24 99 87 78 66 58 52 48 44 42 3 37 35 34 32 31 141 124 111 94 83 75 68 63 59 55 53 50 46 46 44 253 222 2001 170 149 134 123 114 706 i 4 95 90 86 63 79 376 333 302 258 229 207 191 178 167 1 7 149 143 137 131 126 714 628 565 479 421 380 347 322 301 2 268 255 243 233 224 10003TUh.-1 CFH Maximum Capacity of PE Pipe in Cubic Feet per Hour with a Gas Pressure of 6.0 to 7.0 in. WC (1 J4 psig) and a P essure Crop of 1.0 in. WC (based on a 0.60 specific gravity gas) 165 111 88 74 65 59 50 44 39 947 636 503 427 375 338 286 252 227 1228 824 653 553 487 438 371 327 294 1749 1174 930 788 693 624 529 465 419 3143 2110 1671 1416 1246 1122 951 836 753 4023 2765 2221 1900 1684 1526 1306 1158 1049 8878 5960 4720 4001 3519 3169 2686 2362 2127 20 17 16 114 100 90 747 129 117 210 184 166 377 331 298 547 485 439 1065 936 843 13 12 10 76 67 60 99 87 78 141 124 112 253 223 200 376 333 302 715 629 566 10 9 8 8 55 51 48 45 72 66 62 58 102 95 88 83 183 170 159 149 278 258 242 229 518 480 448 422 33 37 29 26 23 192 180 169 149 734 249 233 219 193 174 355 332 3T2 275 247 638 596 561 494 445 898 842 796 705 639 1803 1685 1566 1395 1256 7 7 7 6 6 43 41 39 37 36 55 53 50 48 46 79 75 71 69 66 141 135 128 123 718 217 207 799 191 184 399 380 363 348 334 T 0008TUh-7 CFF! 4 Gostin? Division Q 1116IVaUghn Parkway o Partfand, TN 37148 maximum Capacity of Pi= Pipe in Cuic c Feet per Hair with a Gas Pressure of 8.0 in. WC and a Presure Drop of a.o in. vic (based on a 0.60 specific gravity gas) 308 210 166 141 124 111 94 83 75 68 63 59 56 49 44 1773 1205 955 809 712 641 543 478 430 394 365 341 321 282 254 2298 1561 1236 1048 921 830 703 619 557 570 472 441 415 365 329 3275 2198 1741 14.76 7298 1169 991 871 785 718 665 621 585 514 463 5885 4002 3170 2686 2363 2728 1,803 1,586 1426 1307 1211 1131 1065 937 843 7290 5070 4023 3443 3052 2765 2367 2097 1900 1748 1627 1526 7442 1278 1158 16623 10940 8665 7344 5459 5816 4930 4336 3904 3573 3309 3093 2911 2560 2305 0t r rr str 4451 .tt Tubing tt Letigth :tt*00 (ft) �r rt rt rr CO .It 37 33 30 25 22 20 18 17 16 15 14 73 13 12 12 215 189 171 145 127 113 103 96 90 84 Be 76 72 69 67 279 245 221 187 165 147 134 124 716 109 103 98 94 90 87 393 345 371 264 232 209 191 177 165 156 147 140 134 128 123 715 629 566 480 422 375 343 318 297 280 265 252 241 230 222 991 878 796 687 604 547 503 468 439 415 394 376 360 346 333 1954 7719 1548 1312 1154 7060 970 898 839 790 748 711 679 651 626 2628 2366 2DD6 1764 1589 1454 1346 1258 1'84 1121 1066 1t1003TUh= 1 CFH Maximum Capacity of PE Pipe in Cubiceet per Hour with ca Gas Pressure of 12.0 to 14 in. WC (1/2 psicg or fess) �nd a Pressure Drop of 6.0 in. WC (based on a 0.60 specific gravity g s) 462 310 246 208 183 365 140 723 111 101 94 88 83 73 65 2667 1784 1413 1197 1053 946 804 707 637 583 540 504 475 417 376 3445 2313 1832 1553 1366 1230 1042 917 825 755 700 654 615 541 4909 3295 2610 2212 7946 1752 1485 1306 1776 1076 997 932 877 771 487 8821 5922 4690 3975 3496 3148 2668 2347 2114 1934 1791 1674 1576 1386 694 1248 10606 7290 5854 5010 4440 4023 3443 3052 2765 2544 2367 2227 2097 1859 1684 24918 16727 13249 11229 9877 8894 7638 6630 5970 U64 5060 4729 4451 3915 3525 It ! tl' t'1 tt .tr FSA .It •r t 't Ott Malt 55 49 44 37 33 29 27 25 23 22 21 20 19 18 17 319 280 252 214 188 169 155 144 134 26 120 114 109 104 100 413 363 327 277 244 220 201 186 174 64 155 147 141 135 130 589 518 466 395 348 313 286 265 248 33 221 210 201 192 185 1058 930 838 710 625 562 515 477 445 419 397 377 361 345 332 1442 1278 1158 991 878 796 732 681 634 M4 573 547 524 503 485 12988 2628 2366 2DD6 1764 1589 1454 1346 1258 1'84 1121 1066 1018 976 938 100QBTUh=1 CFH Ph: 1.800.662.0208 e Fax: 615.325.9407 a Web: www.gastife.com F3 Mcximum Capacity of PE Pipe in Cubic Feet per Hour with a Gas Pressu7re12-11 psi and a Pressure Drop a *€ 1,(l psi (bused on 00.60 spec!R6 grovity ggsj L iw 106 1521 526 463 417 353 311 280 6710 4504 3568 3024 2660 2395 2030 1785 1608 8687 5832 4619 3915 3443 3101 2628 2311 2081 12396 832T 6597 5586 49T3 4424 3750 3298 2970 22276 14953 11844 10038 8829 7950 6738 5927 5337 25532 17548 14092 12061 10689 9685 8289 7347 6657 62923 42239 33455 28355 24940 22458 19034 16742 15076 ] 1417 123 ill 94 83 74 68 63 . 9 5 53 50 48 46P 805 708 637 540 1042 916 475 428 391 363 339 3 9 302 287 274 263 253 56 237 221 208 183J 165 1471 1363 1273 1198 1054 949 i 05 1764 1649 1552 1365 1229 2718 2517 2352 2214 1947 1754 84 4523 4227 3979 3500 3151 5 24 5697 5345 5049 4475 4055 97 12777 11941 11239 9885 8902 1417 123 ill 94 83 74 68 63 . 9 5 53 50 48 46P 805 708 637 540 1042 916 475 428 391 363 339 3 9 302 287 274 263 253 825 699 1486 1307 T]77 998 615 554 507 469 439 678 4 3 391 372 355 340 327 2671 2349 2115 1793 790 723 670 626 7577 T420 1300 1204 1125 1059 5 9 558 530 507 485 467 3470 3076 2787 2385 2114 1915 1762 1639 1538 1453 1002 953 910 872 838 1380 1316 1261 7544 6636 5475 5064 4455 4011 3671 3400 3177 2WO 1211 1167 2831 2693 2572 2464 2368 Maximum Capacity of PE Pipe in Cubic Feet Hour with Gas iocouuh=1CFH per a Pressure 015,0 psi and a Pressure Drop of 3.5 psi y r (based on a 0.60 specific gravity c ao 2544 1708 1353 1147 Tubing Length 1008 908 770 677 610 55 9 a0 517 483 454 400 360 74628 98T9 7777 6592 18966 12731 10084 8546 5798 5227 4425 3892 3505 32C 7 2970 2776 2613 2298 2069 27024 18141 14368 12178 7577 6769 5737 5046 4544 41 10711 9645 8775 7T90 3851 3,599 3387 2980 2683 48561 32598 25819 21883 6475 5925 19248 17332 14689 1292T 11635 106:8 5488 5128 4827 4246 3823 9861 53153 36532 29336 25108 22253 201113 17257 15294 13858 12749 9215 8673 7629 6870 11860 11128 10512 9316 137172 92082 72933 61813 54370 48959 41494 36498 32865 30018 8441 27855 26031 24500 27550 19405 �� " r �e r� .�e 305 268 242 205 1754 180 162 148 137 128 121 114 109 104 100 96' 1543 1389 1177 I.CTS695 2274 2000 1801 1526 1036 932 853 790 739 658 626 598 573 55] Vips 1- 2850 2566 2175 1343 1209 IT06 1025 958 901 1913 1723 7577 1460 1364 853 812 775 7x33 714 1-1143240 5822 5121 4612 3908 128 3438 3096 2833 2624 2452 230 1216 1]56 1104 1058 ]017 2185 2078 7225 6403 5802 4965 16447 14466 4401 3987 3668 3413 3202 3{72 1985 1902 1828 2873 2741 2624 2521 2429 13027 11041 9711 8745 8003 7411 69266 6519 6171 5870 5606 5372 5163 Maximum Capacii}r Of PE Pipe in Cubic Feet per Hour with a Gars Pressure 100GBi Jh=lCFH of 1 .0 psi and a Pressure Drop of 5.0 psi ()eased on a 0.60 specific gravity gas) IWO ° 177 7590 7399 1260 1 W 939 846 774 717 670 20291 13621 10789 9144 26309 17661 8043 7242 6738 5399 4862 4449 630 554 499 4120 3851 3624 3788 2871 13988 11856 37487 25164 19931 16893 10428 9390 7958 7000 6303 5769 14858 13380 5342 4993 4699 4133 3722 67362 45220 35816 30355 71340 9974 8982 8220 26700 24043 20377 17923 16139 14770 7612 7714 6696 5889 5303 72320 49705 39915 34162 30277 27433 23479 20809 18855 17346 13679 12783 12032 10583 9530 76137 15141 14302 190283 127734 10T171 85746 75421 67915 57550 50629 45590 41723 12676 11485 38639 36109 33987 29894 26919 sr IM 423 372 335 284 250 Y 2433 2140 ]927 7633 225 206 791 178 168 1437 1294 1184 1096 1025 964 159 151 144 138 133 3154 2775 2498 2118 4495 1863 1677 1535 1421 1328 7250 913 868 829 795 764 1184 1126 T 07 1030 990 3953 3560 3017 2654 2390 2787 2025 7893 1782 8077 7104 6397 5422 4769 1686 1604 1532 1468 1411 4294 3930 3640 3401 3201 - ` 9830 ' 8712 7894.- _07 6 '5988 5425 6991 3031___2883..2753 ...263.__2536 - 22815 20067 16070 15315 13471 4643 4357 4115 72130 11101 10281 9608 9043 3908 3729 3571 3430 3305 8561 8143 7777 7452 7162 i 000BTUh= T CFH 6 Gastite Division - 1116' ughn Parkway � Portland, TN 37748 Division I I T6 Vaughn arkway Portland, TN 37148 Toll Free: 1.800.662.0208 Fax: 615.325.9407 Web. www.gas- ite.corn E-mail: acstite@ansIfi- rnm Rev. 612016 Maximum Ccapactty of PE Pipe in Thousands of BTu per' h ur of Liquefied Petroieum Ge,s With a Gas Pressure of 11.0 in, WCcand a Pressu Drop of 0.5 in. WC (Based on c 1,52 specific graviiy gas Lar 125 99 $4 74 67 56 50 45�38i MRrAM 3MM w� 45 33 29 26 1073 720 571 484 425 383 325 286 257 235 218 204 192 169 752 I' cis 1391 934 740 627 551 497 421 370 333 305 283 264 249 219 197 4983 1331 1054 893 786 708 600 528 475 435 403 376 354 311 280 3563 2391 1894 1605 1412 1272 1078 948 854 781 723 676 636 560 504 4724 3247 2608 ,2232 1978 1792 1534 1359 1232 1133 1054 989 934 828 750 10063 6755 5357 4535 3989 3592 3044 2678 2411 2207 2044 1910 Or 7797 1587 1424 -- - Size i# 1 1/ •Yi it .!Y IY ri liy • /Y. -- Y[ ++ /! /. 1 22 2Q 18 15 13 12 11 14 9 9 8 8 8 7 7 129 113 102 86 76 68 63 58 54 57 48 46 44 42 40 167 147 132 112 99 89 8T 75 70 66 63 60 57 54 62 238 209 186 160 140 126 116 107 100 94 89 85 81 78 75 427 376 338 287 252 227 208 192 T80 169 160 152 146 140 134 642 569 516 441 391 354 326 303 285 269 255 244 233 224 216 7207 1061 956 810 712 642 587 544 508 478 453 431 411 394 379 Maximum Capacity of PE Pipe in Thousands of BTU per Hou of Liquefied Petroleum Geis 5168iUh-1 CFH with a Gas Pressure of 2.0 psi crud a Pressure rvp of 1.0 psi (based on a 1.52 specific gravily gas) � r s r - � F .l 7906 1319 1045 886 779 702 595 523 471 431 399 373 351 304 278 11300 7586 6008 5092 4479 4033 3478 3007 2707 2478 2295 2144 2018 1775 1599 14652 9835 7790 6602 5807 5229 4432 3898 3510 3213 2975 2780 2617 2302 2073 20877 14414 1T 100 94c8 8275 7451 6315 5555 5002 4578 4239 3962 3729 3280 2953 37514 25163 19946 16905 14869 13389 17348 9982 8988 226 7618 7119 6700 5894 5307 43429 29848 23964 20515 18182 16474 14100 12496 11322 0417 9691 9092 8589 7612 6897 - 105963 7T 731 56339 47750 42000 37820 32054 28194 25388 23234 21517 20108 18926 16647 14990 ii Yi ,fi F. •Y/ !! •r!i '11 111 !1 it 236 207 787 158 131 125 115 106 99 93 88 84 80 771 74F 1355 1192 1073 910 800 720 659 611 571 37 508 484 462 443 425 1757 1545 T391 7179 1037 934 855 792 740 96 659 627 599 574 551 2503 2202 1983 1680 1478 1331 1218 1128 1054 2 939 893 853 818 786 4498 3956 3563 3019 2556 2391 2189 2027 1894 1783 1688 1605 1533 1469 14]2 5903 5232 4740 4057 3596 3258 2997 2788 2615 2471 2,347 2239 2144 2060 1485 12705 11175 10063 8529 7502 6755 6182 5725 5350 5 D36 4767 4535 4331 4150 3988 Maximum Capcacify of PE pipe in Thousands of RTU per Hour of Liquefied Pefroiourn G 516BT!lh=l C> fl with a Gens Pressure of 10.0 psi and 0 Pressure Qr p of 1.0 psi (based on a 1.52 specfmc grc ty gas) 2476 1662 1316 1116 9 81 884 749 659:6300 93 3 503 47{7 442 389 350 14234 9555 7568 6414 56c2 5080 4306 3787 10 3121 2890 2701 2542 2236 2014 18455 72388 9812 8316 7315 6587 5583 4970 "22 4 7 3747 3502 3296 2899 2611 26296 17652 13981 11849 10423 9385 7954 6997 57 6 5340 4990 4697 4131 3720 47252 31720 25123 21293 1872.9 16865 14294 12572 321 10 61 9595 8967 8440 7423 6685 53960 37087 29782 25489 22591 20469 17519 15527 068 12 43 72041 11297 10671 94588569- _ 133476 89601 70967 6OT48 52905 47640 40376 35514 980 29 67 27104 25329 2,3840 20970 18882 Tubing - • e r 0 1 297 261 235 799 175 158744 134 725 11 171 106 107 97F 93 1707 1501 1352 1146 1008 907 830 769 719 67 640 609 582 557 536 2213 1946 1753 1485 7306 1176 1077 997 932 87 830 790 754 723 695 3153 2773 2497 2116 1862 7676 1534 1421 1328 12 0 1183 1125 1075 1030 990 5665 4983 4487 3803 3345 - 3072. 2757 2553 - ..2386- _ _22 2126 2022 - - 1931- - -1851- • 1779 7334 -600' 5890 5047 4468 4048 3724 3465 3251 3071 2916 2782 2664 2564 2466 76004 74077 12676 14743 9449 8509 7787 7212 6739 6343 6005 5712 5455 5227 5024 2S1613iUh=1CFH Ph: 1.800,662.0208 a Pax: 615.325.9407 e Web: www,,gastite.com GAS PIPING 114STALLAT'IONS TABLE 402.4(26) SCHEDULE 40 METALLIC PIPE INTEN13ED USE 219,000 150,644 Pipe sizing between first stage (high-pressure regulator) and PIPE SIZE (inch) Nominal Iz 'f, 1 I I "/z 0 51,700 Actual 10 0,622 0.824 1.049 1.380 1.610 1 21 Length (ft) 7 40,100 70,900 145,000 Capacity in Thousands of Btu In. 20 3,320 2,280 6,950 4,780 13,100 9,000 26,900 18,500 40,300 27,700 77,11 53,. 30 1,830 3,840 7,220 14,804 22,200 42,f 40 1,570 3,280 5,180 12,700 19,000 36,f 50 1,390 2,910 5,480 11,300 16,900 32,5 60 1,260 2,640 4,970 16,200 I5,300 29,4 70 1,160 2,430 4,570 9,386 14,100 27,1 80 1,080 2,260 4,2.54 8,730 13,100 25,2 90 100 125 1,016 956 848 2,120 2,000 1,770 3,990 3,770 3,344 8,190 7,730 6,850 12,300 11,600 10,300 23,6 22,31 19,81 150 768 1,610 3,020 6,210 9,300 17,91 175 706 1,480 2,780 '-5,710 8,560 I6,51 200 657 1,370 2,590 5,320 7,960 15,3[ 250 300 350 400 450 582 528 486 452 424 1,220 2,290 "8371,580 4,710 4,270 3,930 3,650 3,430 7,060 6,400 5,880 5,470 5,140 13,61 12,3C 11,30 10,50 9,891 500 400 3,240 4,850 9,34[ 550 380 795 1,506 3,070 4,610 8,87( 600 363 759 1,430 2,930 4,400 8,46C 650 347 726 1,370 2,810 4,210 8,1110 700 334 698 1,310 2,700 4,044 7,790 750 321 672 1,270 2,66a 3,944 7,s66 800 316 649 1,220 2,510 3,760 7,244 850 300 628 8,184 2,430 3,640 7,016 960 291 649 1,150 2,360 3,536 5,800 950 283 592 1,114 2,290 3,430 6,600 1,000 275 575 1,080 21230 3,330 6,420 11100 261 546 1,030 2,110 3,170 6,100 1,200 249 521 982 2,020 3,020 5,820 1,300 239 499 940 1,930 2,890 5,570 L400 229 480 903 1,850 2,780 5,350 1,500 221 4.62 870 1,790 2,680 5,160 1,600 213 446 844 1,730 2,590 4,980 1,700 206 432 813 1,670 2,5110 4,820 1,800 200 419 789 1,620 2,430 4,670 I1900 194 407 766 1,570 2,360 4,540 2,000 189 395 745 1,530 2,290 4,4I0 For SL I inch = 25.4 mm, I foot = 304.8 tnm, I pound per square inch - 6.895 kPa, Mnch water column = I British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m'/h, I degree = 0.0174 - lNote: AU table•emries have been. zounded to three signilxcant•digits... - - - - . _ - - _ - - - _ GasUndiluted Propane Inlet Pressure 10,0 psi Pressure Drop 1.0 psi Specific Gravity 1.50 second stage flow -pressure regulator). 2112 3 ' 4 97 2 469j 3,068 4.026 er Hour 10 124,000 0 85,000 219,000 150,644 446,009 306,4011 {7 68,200 12.1,01}0 246,040 0 58,400 143,000 21I,000 0 51,700 91,500 187,000 0 46,900 82,900 169,000 0 43,104 76,300 156,000 7 40,100 70,900 145,000 } 37,700 35,606 7 31,500 66,600 62,940 55,700 136,000 128,000 114,040 f 28,600 50,500 103,000 26„300 46,500 94,700 24,400 43,200 88,100 21,760 19,540 18,140 16,840 15,800 38,300 34,700 31,900 29,7061 27,900 78,100 70,800 65,100 60,600 56,800 14,900 26,390 53,700 84,100 25,000 51,000 13,500 23,900 48,600 12,900 22,800 46,600 12.400 28,946 4000 12,444 21,166 43,106 II,500 20,400 41,600 11,200 1'9,800 40,300 15,260 39,100 E10,800 £4,500 13,600 37,940 10,200 88,100 36,900 9,720 17,200 35,040 9,270 16,400 33,400 8,880 15,700 32,000 8,530 15,100 30,800 8,220 14,500 29,600 7,940 14,000 28,,600 7,680 I3,600 27,700 7,450 13,240 26,940 7,2317 12,800 26,100 7,030 I2,400 1 25,400 ).2488 kPa, rad. 50 FLORIDA BUILD)IiIG 6011E - FUEL GAS, 6th EDITION (2017)