Loading...
HomeMy WebLinkAboutTank specsI20-2,000 w-,! Finished with ArcClad" Superior Aboveground Coating 8" dome in black plastic or galvanized steel ` dannc�'1y6 r-��eymyyyd p C4J�d�i'.-16 Fabricated to A.5-M.E- code, Section Vlli, Division ] Registered with the National Board For more information 888.558.8265 S Tank Fea- ■ e .ures; Dual se vice options for above or under ground applications Option 1 Superior, ready to bury, red oxide dL rable powder coating with black polyeth ien dome* Option : Aboveground option with A.rcCl coating and an 8" steel AGUG All valve, -and float gauge are centered under dc me --------------- #Vacuum Purged #72 liquio level outage valve orifice s N W o rOUTSME co DIAMETER a F-- 0 WIDTH GENERAL SPECIFICATIONS Conforms to the latest edition and addenda of the ASME code for Pressure Vessels, Section Vill, Division 1. Camp lies with NFPA 58. Rated at 250 psig from -202 F. to 125L' F. Alf tanks may be evacuated to a full (14.7 psi) vacuum, Vessel Finish: Coated with epoxy and red powder. (Tanks coated with the epoxy powder roust be buried). For Aboveground use, tanks will be coated with ArcClad, zinc rich epoxy primer and super durable TGIC polyester topcoat. "Applicalole federal state, or local regulations may contain specific requirements For protective co installer are responsible far compliance with all federal state, local and NFPA Industry regulations. continuous and uninterrupted and must comply with local, state or national code, Water Outside Head Capacity Diameter "type 120 wg. 24" RIP 454.2L 609.6 mm 250 wg. 31.5" Hemi 946.3 L 8003 mm 320 wg. 31.5" Hemi 1,211.2 L 800.1 mm 500 wg. 37.42" Hemi 1,892.5 L 950.5 mm 1000 wg. 40,96" Hemi 3,785.0 L 1,040.4 rnm All vessels dimensions are approximate. Overall Length 5' - 513/16" 1,671.6 mm T - 21/2" 2,197.1 mm 8'-11314" 2,736.9 mm 9'-10" 2,99-1.2 mm Is, -1013/16' 4,846.6 mm For -more information 888.558.8265 Overall Height 3' - 3/16" 919.1 mm 3' - 7106,, 1,109.6 rnm 3' - 711/16' 1.109.6 mm 4'-15/8" 1,260.4 mm 4'_53/16" 1,350.9 m m Leg Width io 1/6" 257.2 mm 12 3/4" 323.9 mm 12 3/4' 323.9 mm 15" 381.0 corn 16114" 412.8 mm OVERALL LENGTH AR DOME WITHDRAWAL VALVE ANODE CONNECTION FILLET? VALVE NAME PLATE and cathodic protection. The purchaser and dic protection is required and coating must be Leg Spacing 3'-0" 914.4 mm 3' - 6,j 1,066.8 mm 4' - 01/4" 1.225.6 mm 5'-0„ 1,524.0 mm 9'-o" 2,743.2 mm [duality Weight Full Per Load Stack 245lbs. 96 12 111.1 kg. 472 lbs. 63 9 2141 kg- 5881bs. 45 9 266.7 kg. 871lbs. 30 6 395.1 kg 1,7291bs 15 5 784.3 kg. Eng. Update: Aprll 5, 2016 Why Tanks Corrode Underground steel tanks corrode due to an electrochemical reaction between the tank and the surrounding soil. The process of corrosion occurs due to small voltage differences on the steel surface that result in the flaw of DC current from one location to another. Where current flows from the tank into the sail corrosion occurs, This location is called the anode in a corrosion circuit. Where currentflows from the soil to the tank, no corrosion occurs. The progress of corrosion is determined by the amount of current flowing between the anode and -the cathode and whether the locations of the anode/ cathode remain constant over time. Corrosion rates are generally higher in wet soil environments since the conductivity of the soil promotes the flow of DO current in the corrosion circuit. Corrosion generally exhibits itself on underground tanks in either a general overall rusting fir more commonly, a pitting attack Pit locations may result from metallurgical conditions of the steel surface or soil variations such as rocks, salts, fertilizer, moisture concentration, oxygen concentration, etc, Preventing Corrosion Protecting underground tanks from corrosion is easily achieved by the use of two commonly applied protection methods: external coating and cathodic protection. These two methods are complementary and should be used in conjunction with the other. An effective external protective coating insulates the steel from the soil environment, thus preventing the flow of corrosion current from the anode to the cathode. An effective external coating can protect over99% of the tanksurface area, However, no coating is perfect, Damage from cflnstrucfion or soil stresses crease tiny defects, which may result in accelerated corrosion at the defect, Gathaft protection prevents corrosion at those defects by applying GC current from an external source, forcing the tank to become cathode. Application of sufficlent UC current to the tan kwiII prevent any corrosion from occurring. The two general types of cathodic protection systems are sacrificial and impressed current. Sacrificial systems are used when the amount of current required far the protection is small, such as in underground propane tanks. Impressed current systems are more commonly used for large structures such as large diameter pipelines. Electrical isolation of the tank from metallic piping systems - - --and-electrical grounds is -critical forthe cathodic protection -systems, effectiveness. How ;Sacrificial Cathodic Protection Works Sacrificial systems work by creating a galvanic connection between two different metals The most common anode material is magnesium, which when c upled to steel results in DC current flow from the magnesium to he steel. The open circuit potential of steel is about -0.50 volts referenced to a copper sulfate electrode. The open circuit potential of m ag nesium is about -1.55V to-1.80V. By connecting the two metals to g el her, the difference of 1 to 1.25V volts results in current flow to the tank 1 h at overcomes the natural corrosion cells that exist an the tank, With tl i is current available to the tank, no corrosion occurs. Magnesium An c des There are a va iety of anode sizes and allays used for cathodic protection. The wo primary alloys are designed as H-1 (or A263) and High Potential. Fhe H-1 allay is produced from recycled magnesium and has an open circuit potential of approximately--1.55V. This alloy is well suited for protection of underground propane tanks. The High Potential alloy is 9% pure magnesium having an Open circuit potential up to -1.8V. Thi alloy should be used for soil applications over 10,000 ohm -cm resfstivi v. The two most c mmon anode sizes used for underground propane tanks are 9 lb. anc 171b. The size designation relates to the metal weight. 10' of #12 TVV insulated wire is attached to the anodes. Anodes are then hackfilled in a mixture of gypsum, bentonite, and sodium sulfate to louver the ele ct ical resistance of the anode to soil. The mixture is a low cost, no n haza rdaus, electrically conductive backfi11. The anode and backfill is then packaged in a cotton bag and either a cardboard box or paper bag. Actual shipping weight of these anodes with backfill is 27 Ib. and 45 lb, Application Reco mendations Magnesium an s can protect underground tanks in most soil conditions. The H 1 alloy is generally very effective. The following chart providessizeand uantftyrecommiendata risforvarioussize tanksbased on conservative dE sign assumptions. This chart covers soil conditions up to 10,000 ohin-centimeter resistivity. Resistivffies higher than 10,000 ohm-centmeter generally represent very dry soils. Verification of soil resistivity c n be performed through soil analysis. Contact us for design recom rr endatfons in locations where soil res 1 stivitie s exceed 10,000 ohm -cm, or if there is no effective external coating on the tank. The propane servi a line from the tank to the house also must be considered in the athodic protection design, unless the service line is plastic. All underground steel pipe should be externally coated with a corrosion resista t material. The service line should be electrically isolated at the hou e with an insulating fitting or union. If service pipe is less than 50' in I ngth, the tank anodes will provide sufficient current to protect both tarli and pipe. For longer lengths of pipe, an additional anode may be requ red at the house connections. If another-m-etailic i naterial such as -copper -is -used-for service pining; - - - - - - the pipe should be electrically isolated from the tank at the fill pipe connection. Copp r and steel create a galvanic couple thatwiII accelerate corrosion of the stf el tank when directly connected to copper piping. Generally, copper pi 31ng does not require cathodic protection. Soil Type Fertile Soils, Clay, Sandy Loam Sand, Gravel, Rocky areas Tank Cap. (gal.) 5 to 5000 ohm -cm 5000 to 10000 ohrn-cm Size (1ty. Allay Size Qty. Alloy 120 9# 1 H-1 9# 1 H-1 150 W 1 H-1 9# 1 lH-1 250 9# 1 H-1 W 2 H-1 325 9# 1 H-1 9# 2 H-1 500 17# 1 H-1 9# 2 H-1 1000 17# 2 H-1 9# 4 H-1 1500 17# 2 H-1 9# 4 1�-1 2000 17# 3 H-1 9# $ H-1 `Based on 90% effective external coafing, 2 malff2 current density, and 30- year Anode life. Anode Installation 1. Determine size and quantity of anodes from application chart. 2. When a single anode is installed, it should be located near the tank center on either side of tank. 3. When multiple anodes are installed, space them evenly around the tank. See examples below. 7 anode 2 anodes 4 anodes C-7) 4.Anodes are shipped in either cardboard boxes or multi -wall paper sacks, Remove outer container and bury the cloth bagged anode. If anode is supplied in plastic bag, remove plastic bag before installing. 5. Install anodes approximafelytwo to three feetfrom the tank and at feast as deep as the center line of the tank. Anodes work hest in locations with permanent moisture, so generally the deeper the better. 6.After placing the anode, stretch out the anode connection wire and extend over to a connection point on the tank fill pipe. 7. Dover the anode with approximately six inches of backf ill and pour 5 gallons of water on the anode to saturate the prepared backfiIJ. Water is necessary to activate the anode. 8. Connect the anode wire to the tank with a low electrical resistance connection. Examples are threaded stud on the tank fill pipe or any accessible metallic connection point to the tank. All connections should be coated with a moisture -proof material. 9. Ideally, the tank connection is made in the area of the tank fill pipe within the covered dome. With access to the anode wire, subsequent testing of the tank can include measurement of anode output and verification of performance, 10.Verify performance of the anode using an appropriate test procedure. Connection Under Dome �1 1 Protection Testing Procedure Equipment Nee ed: digital Voltmeter, Red Test Lead Min. 12' Long & Black Lead Min. 2' Long, Reference Electrode (GDpperlCopper Sulphate Half -Cell) STEP 1: Using a d igital vo€tmeter insert the red test lead into the Volt jack of the metal, and select the 2 or 20 volt DG scale. Clip red test lead connector to an uncoated metallic area of the tank, preferably to the fill pipe m ltivalve. A good solid connection is very important. (DO NOT connect to shroud). STEP 2: lnsertth black test lead into the Common jack on the meter, and connect the opposite end of the lead to a charged reference electrode (%z cell . STEP 3: Remove protective cap from the porous plug at bottom end of electrode. Pla a porous plug and into native soil (remove grass if necessary) at four locations around the tank done on each side of the tank, and one at each and of the tank). If difficulty is encountered obtaining readings, moisten soil with water or dig % cell deeper into the sail. STEP 4: Record all four meter readings on an appropriate form. The feast of all four r adings should be a minimum of-0.850v or more negative. (Note: If any of the tour readings are below (less negative) -0.850v then the ank is not fully protected). Charging Reference Electrode STEP 1: Unscre and remove porous plug end of new .reference electrode. Add deionized or distilled water to the copper sulfate crystals, filling electrode completely. The solution will turn blue in color and there should always be excess crystals at the bottom of the tube. DO NO USE TAP WATER. STEP2: Replace orous plug end of electrode and place in an upright position: so that e porous plug end is facing in the down position and let stand for 1 hour before use. This will allow the porous plug to become completely saturated before use. Caution: Do not a r1ow electrode to contact oil, road salts, or other substances that way contaminate the solution by absorption through porous p #g. Do not allow electrode to freeze. Distributed By: 11M11.50M ES-Q-GAG Generator Generac Job Name Contractor Job Location Approval _ Engineer Contractor' Approval — - Reoresenta SKU Dormont SupraSafell Flexible Gas Appliance Connectors The flexibte connection between the gas supply and the gas inlet of a Generac® Stationary Outdoor Backup/Standby Generator. Features • Operating Temperature -40°F to 150'F (-40'0 to 65.6`C) • Operating Pressure MAX 0.5psi (3.45 kPa) • Hydrostatic Burst Pressure MIN 250psi (1725 kPa) ■ Flexible Tube Material Annealed 304 Stainless Steel • Flare Nut Material Carbon Steei with Zinc Trivalent Chromate Plating • Flare Adapter Material Cartoon Steel with Zinc Trivalent Chromate Plating CSA Group Certificate of Compliance to Product Standards ANSI Z21.75/CSA 6.27 — Connectors for Outdoor Gas Appliances and Manufactured Homes Scope states"... intended for exterior use above ground for making non -rigid connection s... between the gas supply and the gas inlet of an appliance for outdoor installation that is not frequently moved after Installation." In addition section 1.5.4 states the connector is designed for occasional movement after installation. Repeated bend- ing, flexing.or extreme vibration must be avoided. Normal opera- tion of a clothes dryer, rooftop HVAC unit or SIMILAR OUTDOOR APPLIANCE ACES NOT constitute extreme vibration or movement. ANSI Z21.24/CSA 6.10 — Connectors for Gas Appllances (Excluding 60/61 Series} IP c us Product Configurations ��� .r o- ANSI Z223.11NF International Fue 6149.1 —Natura (CSA C Uniform Mechanl Uniform Piumbin� Additional � Commonwealth of Plumbers and Additional UL2200-2015: Section 66B V' For use with Generac stationary outdoor backup/ standby generators. Series 30, 40 and 60 'A 54 National Fuel Gas Code Section 9.6 Gas Code 0FGC) Section 411.1 Gas and Propane Installation Code :nup) Section 6.21 A Code (UMC) Section 1313.0 Cade (UPC) Section 1212.0 Massachusetts Board of State Examiners as Fitters ary Engine Generator Assemblies Test. In in in In OL4835A CAN3Q$131-14GL 30 '/q % '/z 14 OL4&36A UAW-4141-14K 40 '/ 1 '/ 14 1 OL4836C CAN50-6161-15GL. 60 1-'/, I 153 1 1-'/ 15 'CAN" prefix indimtes product supplied WM bath 6ngGsh and French instrudons fur Canada �1l;7'lll!'l:s All Installations must completely comply with all Dormant man ufactu dlig company warnings and Instructions, national, state and local Codes and all applicable ansi standards. Cormont productspac fications in US. customary units and metric ale approximate and are provided for referents onPy. For precise n menfs, plmso contact uonnonf Technical Service. Aormont reserves the dghl to change or modily product design, construction, spec or materials without prior nobca and without incudW any oblgadon to make such changes and modrflcatus on llormont products or subsequently sold_ Werto the ouanor's manual forwarranty i r analbrr. - D6-rmont* .4MLWMBrand Minimum Flow Capacity at Specified Pressure Drop (Straight Length BTU/hr. NATURAL GAS, 0.64 SG, 1 DOD BTUku.ft.) CONFIGURATION PRESSURE ,.U. JINCHES WATER COLUMN] Generac Pail NumW Dormant Fart Number 11'i ES NOminBt m N0..n2l Length in rn 0 50 rn a75 ria7246,50G 1.25 in ?.50 in 1,75 in w m OL4835A CAN30-3131-146L 30 / 14 174,500 213,5fl0275,500 1302,000 326,000 349,000 OL4836A CAN40 4141-14GL 40 %, 14 338,500 414,500 478,500 535,000 1 586,000 633,ODQ 677,000 OL4836C CAN60-6161-15CzL 60 1'/ 15 1,171,500 1,434,500 1,656,500 1,852.000 1 2,029,000 1 2,191,000 2,343,000 {Straight Length BTU/hr. LP GAS, 1.55 5G, 2500 BTUIou.ft.j ,.,•COLUMN] fienerac Part Number Dormont Part Number SERlE5 Nominni 10 Nominal Length in in 17279;2007 0.50 in 0.75 if? 1.00 irr T25 in t,5a in 7.75 in 00 in OL4635A CAN30-3131-146L 30 2 14 341,600 394,400 440,80Q 483,200 521,600 558,400 OL4836A CAN40-4141-14GL 40 % 14 541,E00 663,200 765,600 856,000 937,600 1,012,800 11,083,200 OL4836C CAN60-6161-15GL 60 1 Y 15 1,874,400 2,295,200 2,650,400 2,963,200 3,246,400 3,605.600 3.748.900 Dormont part number CAN30-3131-146L can supply a minimum of 349,000 BTU/hr. of natural gas 0 2.00 in. water column pressure drop to the generator. D6fM0nt"------ __-_-_. --- ----------- A, vWi" rS Brand USA: Tal; 800) 367-%M o Fax, (724) 733-4808 e l crmorrt.com Canada: I al: (B05j 332-Q90 • Fax (905) 332-7068 a Dormam.caa Lain America: Tel: (52) 81 1001-8600 o Fax 152) 61-80DD-7091 - Dormont.00m ES-D-GAG_Generator_Generac 1651 Q 2016 Dormant �42mpact First Stage Regulators LV3403TR Ideal for use as a first stage regulator on any domestic sixeAsMF or DOT container in propane gas installations requiring rap to I,500i 000 BTU's per hour. The regulator fs factory set to reduce container pressure to an intermediate pressure of approxfmately I PSIG. LV8402TR 1 aVEr Duff t LV3403TRV9 1/4 FNPT %" F.NPT 713Z 10 PslG 1,5p0,Qfl0 9:pp " Maximum flow based on Net pressure 20 PSIG higher than the reoalatorsettrng and delivery pressure 20% lower than the regulator setting and delivery pressure 201A lower than the setting. Provides accurate first stage regulation in two -stage bulk tank 6e5 systems. Reduce tank pressure to an intermediate pressure of 5 to 10 F, PSIG. Also used to supply high pressure burners for applications like L industrial furnaces or boilers. Also incorporated in multiple cylinder installations. i LV4403SR F 5 l-5 s 3TR4 NPT , 2 6-10 3SR9 NPT 1_5 3TR9 14 F. POL'"TR96 LLV 10 t 5-1d Yes 2,5QO,ff00 5R96 EN PT " When used for fnal stage pressure control, must either incorporate integral relief valve or sepa"be rellef valve should be ecifiied in accordance with NFPA Pamphlet 58. Maximum flow based an inlet pressure 20 PSIG hfghar than the regulator smiting and delivery pressure 20% lower than th set5ng- I fk Designed to reduce first stage pressure of 5 to 20 PSIG down to o�+ burner pressure, normalcy II" w.c. Ideal for Inedlum commercial ., installations, multiple cylinder installations and normal domestic loads- it �a %2" F _NPT #LrIplet 9' to t 3" ` Overinlet 314" F. NPT Dw_o. s/a F. NPT =ign _ Maximum flow hosed on 10 PSIG inlet and 9" w.c. delivery pressure. ` ------------ LVM03TE LV41403 Series II.V44038sezees 100 Rego Or. Elorr, Nr- 27244 USA www.;egopioducts.com +1 (336) 449-7707 oe!" mb v sul"Xing Chart Fealuring the ------ MOM, Co'"limp"WiTel Inc. DO Driscap c --e KO Performance -Pjps. June 2016 112' c75 .625 7.0 0.EE000 314' IPS 1.050 11.0 01095 i"CT5 1.125 11.5 0.099 1 " IPS 1.315 11,0 1-1 14" IPS 1.660 T 0.Q 0.166 1-112" IPS 1.900 13.0 0.173 2" IPS 2.375 11.0 0.216 Normal Pipe Size crud SIR must be used to match fi dings and IPS PE pipe. Nominal Pipe Size and Min. Wall must be used to match Mfings and CTS PE pipe. All pipe shall be ASTiVI Q2513. Visit www.performancepipe.com for more information. Be OF PCIPE Patent 4s 5,366.260,5,692,785 & 5,853,272 Gastite Division l i 16 4ughn Parkway o Porfiand, TN 37148 Verity the polyethylene (RE-) pipe being assembled is the correct size. ON - Cut pipe ends square. STEP Z Clean piping thoroughiy to assure there is no dirt grease or oil in assembly area. SUP 4 Chamfer end of pipe using Continentals chamfering tool with LD. gauge, ,may R Ttl ID OF PIPE Patents 5.3fi6,260,5,fi42,385 a 5,853,272 Ph: 1,800,662.0208 o Fcrx: 615.325.9407 1 WGb: www.gastile.com Dark the stab depth by inserting the pipe info the chamfer tool and marking the pipe at the entrance as shown, if using chamfer fool with ID gauge, check for proper chamfer by inserting pipe over gauge- STO 7 Stab pipe completely I _ into fitting entrance. I 19TV el Stab pipe completely into fitting so that the mark on the pipe is Within 7/8" from the fitting entrance. 11E,P Repeat steps T though 4 for all Can -Stab joints. M ry u01 To assure prop r assembly and to comply with 49 CFR 192 5ubp rt J-Tesf requirements, the joint shall be leak tested. :3 Maximum Capacity of PE Pipe in Cubic Feet per dour with a Gas Pressure of 6.0 in. WC and a Pressure ®rap of 0.5 in. PVC (Based on a 0.60 specific grcrviiy gas 110 74 59 50 44 39 33 29 26 24 22 21 20 17 16 635 426 338 286 252 227 192 T69 152 1 9 129 T20 113 100 90 823 553 438 371 326 294 249 219 197 ISO 167 156 147 129 116 1173 787 624 529 465 419 355 312 281 257 238 223 209 184 166 2108 1415 1121 950 835 752 638 561 505 452 428 400 376 331 296 2765 1900 1526 1306 1158 1049 898 796 721 653 617 579 547 485 439 5954 3997 3166 2683 2360 2125 1801 1584 1426 K05 1209 1130 1063 935 842 00 ► i� 0 i .6 it :5 •: e01100 i00 1309 0 0 13 12 10 9 8 7 6 6 6 5 5 5 4 4 76 67 60 51 45 40 37 34 32 3 29 27 26 25 24 99 87 78 66 58 52 48 44 42 3 37 35 34 32 31 141 124 111 94 83 75 68 63 59 56 53 50 48 46 44 253 222 200 170 149 134 123 114 706 7 o 95 90 86 83 79 376 333 302 258 229 207 191 178 167 IN 149 143 137 131 126 714 628 565 479 421 380 347 322 301 283 268 255 243 233 224 10003TUh-1 CFH Maximum Capacity of PE Pipe in Cubic Feet per Hour With a Gas Pressure of 6.0 to 7.0 in. WC (1 j4 prig) and a R essure D op of 1.0 in. WC (based on a 0.60 specific gravity gas) 165 11I 88 74 65 59 50 44 39 947 636 503 427 375 338 286 252 227 1228 824 653 553 487 438 371 327 294 1749 1174 930 788 693 624 529 465 419 3143 2110 1671 1416 1246 1122 951 836 753 4023 2765 2221 1900 1684 T526 1306 1158 1049 8878 5960 4720 40GI 3519 3169 2686 2362 2127 20 17 16 114 100 90 T47 129 117 210 184 166 377 331 298 547 485 439 1065 936 843 13 12 10 76 67 60 99 87 78 Ml 124 112 253 223 200 376 333 302 715 629 566 10 9 8 8 55 51 48 45 72 66 62 58 102 95 88 83 183 170 169 149 278 258 242 229 518 480 448 422 33 37 29 26 23 192 180 169 149 134 249 233 219 193 174 355 332 3T2 275 247 638 596 561 494 445 898 842 796 705 639 1803 1685 1566 7395 1256 7 7 7 6 6 43 41 39 37 36 55 53 50 48 46 79 75 77 69 66 141 135 128 123 118 217 207 799 191 184 399 380 363 348 334 T 0008iUh-7 r-FH 4 Gastite Division a 1116 Vaughn Parkway a Portfand. TN 37148 MQx1mum Capacify of PE Pipe in Cub c Feet per Hoar with o Gas Pressure of 8.o in. WC and a Pres pare Drop of 3.0 in. WC (used on a 0.60 specific gravity gas) 308 210 166 141 124 117 94 83 1773 1205 955 809 712 641 543 478 2298 1561 1236 T048 921 830 703 619 3275 2198 1741 14.76 1298 1169 991 871 5885 4002 3170 2686 2363 2128 1803 1586 7290 50TO 409.3 3443 3052 2765 2367 2097 16623 10940 8665 7344 6459 5816 4930 4336 75 68 63 59 56 49 44 430 394 365 341 321 282 254 557 510 472 441 475 365 329 785 718 665 621 585 514 463 1428 1307 1211 1131 1065 937 843 1900 1748 1627 1526 7442 1278 T158 3904 3573 3309 3093 2911 2560 2305 37 33 3E] 25 22 20 18 17 16 �T®5� lg 12 12 215 189 171 145 127 113 103 96 90 84 80 76 72 69 67 279 245 221 187 165 147 134 124 716 109 103 98 94 90 87 393 345 371 264 232 209 191 177 165 156 147 140 134 128 123 716 629 566 480 422 375 343 318 297 280 265 252 241 230 222 991 878 796 681 604 547 503 468 439 415 394 376 360 346 333 1954 17T9 1548 1312 1154 1060 970 898 839 790 748 711 679 651 626 10008TUh=1 CFH Maximum CcaPacify of PE Pipe in Cubic eel per Hour with a Gas Pressure of 12.0 to 14 in. WC (1 J2 psig or less) re a Pressure Drop of 6A in. WC (based on a 0.60 specific gravity g 5) 462 370 246 208 183 165 140 123 ill 101 94 88 83 73 i65 1784 1413 1197 1053 948 804 707 637 583 540 504 475 417 376 3445 2313 1832 1553 1366 1230 1042 917 825 755 700 654 615 541 4909 3295 2610 2212 7946 1752 1485 1306 1176 1076 997 932 877 771 487 12657 8821 5922 4690 3975 3496 3148 2668 2347 2114 1934 1791 1674 1576 1386 694 1248 10606 7293 5854 5010 4440 4023 3443 3052 2765 T544 2367 2227 2097 1859 1684 24918 16727 13249 11229 9877 8894 7638 6630 5970 U64 5060 4729 4451 3915 3525 r r �r ,er ar •rr r� w :rr •aa r r +r it rrmm 55 49 44 37 33 29 27 25 23 2 21 20 19 18 17 319 280 252 214 185 169 155 144 134 26 720 114 109 104 100 413 363 327 277 244 220 201 186 174 64 155 147 141 135 130 589 518 466 395 348 313 286 265 248 33 221 210 201 192 185 1058 930 838 710 625 562 515 477 445 19 397 377 361 345 332 1442 1278 1158 991 878 796 732 681 639 34 573 547 524 503 485 472938 2628 2366 2006 7764 7589 1454 1346 1258 1 84 1121 1066 T078 976 938 180CBTUh=1 CFH Ph: 7,800.662,0208 e Fax: 615.325.9407 o Web: www.gaslite.com 5 MQxirrrurn Capacity of PE Pipe in Cubic Feet per Hour with a Gas Pressure t 2.0 psi and a Pressure Drop of 1,0 psi MCISed on a CAD specif6 gravitygas) vci asa uo5 41/ 363 31T 280 56 237 22T 208 183 165 6710 4504 3568 3024 2660 2395 2030 1786 1608 1 71 1363 1273 1198 1054 949 8687 5832 4619 3915 3443 3101 2628 2311 2081 T 05 1764 1649 1552 1365 1229 12396 8321 6591 5586 49T3 4424 3750 3298 2970 2718 2517 2352 2214 1947 1754 22276 14953 11844 10038 8829 7950 6738 5927 5337 4684 4623 4227 3979 3500 3151 25532 17548 14092 12061 10689 9685 8289 7347 6657 6124 5697 5345 5049 4475 4055 62923 42239 33455 28355 24940 22458 19034 16742 15076 13797 12777 11941 11239 9885 8902 140 123 liT 94 83 74 68 63 59 5 53 5Q 48 46 44 8(}5 708 637 540 475 428 341 363 339 3 9 302 287 274 263 253 1042 916 825 699 6T5 554 507 469 439 4 3 391 372 355 340 327 1486 13(]7 T177 998 678 740 723 670 626 59 558 53Q 507 485 467 2671 2349 2TT5 1793 7577 1420 1300 1204 1125 1059 1002 953 910 872 838 3470 3076 2787 2385 2114 1915 1762 1639 1538 1453 1380 1316 T261 1211 1167 7544 6636 5975 5064 4455 4011 3671 3400 3177 2WO 2831 2693 2572 2464 2368 T OQ08TUW CFH Maximurl Capacity of PE pipe in Cubic Feet per Hour with a Gas Pressure ol 5.0 psi and a Pressure Drop of 3,5 psi (bmsd on a 0.60 specific gravity gas) MIN° •° �° 2544 1708 1353 1147 1® 908 770 677 610 653 517 483 454 400 369 74628 98T9 7777 6592 5798 5227 4425 3892 3505 3217 2970 2776 2613 2298 2069 18966 12731 10084 8546 7517 6769 5737 5046 4544 41 3851 3599 3387 2298 2069 27024 18141 14368 12178 10711 9645 8775 7T90 6475 59 5488 5128 4827 4246 3823 68 485b1 32598 25819 21883 19248 17332 14689 1292T 11635 106 8 9861 9215 8673 7629 6870 53153 36532 29336 25108 22253 20163 17257 15294 13856 127 9 11860 17128 10512 9316 8441 137172 92082 72933 61813 54370 48959 41494 36498 32865 300 8 27855 26031 24500 27550 19405 E ■ et / / °° .// / 6i/ •°° /isums°° ° °t // 305 268 242 205 180 162 148 137 128 721 114 109 104 100 96 1754 1543 1389 T177 1036 932 853 790 739 695 658 626 698 573 551 2274 2000 1801 1526 1.1343 1209 1T06 1025 958 901 853 812 775 743 714 3240 2850 2666 2175 1913 1723 1577 1460 1364 1281216 1156 1104 1058 1017 5822 5121 4612 3908 =8 3096 2833 2624 2452 2302785 2078 1985 1902 T828 7225 6403 5802 4965 4401 3987 3668 3413 3202 3025 2873 2741 2624 2521 2429 16447 14466 13027 11041 9711 8745 8003 7411 6926 6519 6171 5870 5606 5372 5163 10008TUh=l CFH Maximum Capacity of PE Pipe in Cubic Feet per Maur with a Gas Pressure of 10.0 psi and a Pressure Drop of 5.0 psi (leased on a 0.60 specific gravity gos) • f ■ 39 0 21 2369 1877 7590 1399 1260 1068 939 S84 774 717 670 630 554 499 2429T 13621 10789 9144 8043 7242 6738 5399 4862 4449 4120 3851 3624 3188 2871 26309 T7661 13988 11856 10428 9390 7958 7000 63M 5769 5342 4993 4699 4133 3722 37487 25164 19931 16893 14858 13380 71340 9974 8982 8220 7612 7714 6696 5889 5303 67362 45220 35816 30355 26700 24043 20377 17923 16139 14770 13679 12783 12032 10593 9630 72320 49705 39915 34162 30277 27433 23479 20809 18855 17346 76137 15141 14302 12676 11485 190283 127734 10T171 85746 75421 67915 57560 50629 45590 41723 38639 36109 33987 29894 26919 SEEN., 6 ti °B °° . / aE 423 372 335 284 250 225 206 791 178 768 159 157 144 138 733 2433 2140 1927 1633 1437 1294 1184 1096 1025 964 973 868 829 795 764 3164 2775 2498 2118 1863 1677 1535 1421 1328 1250 1184 1126 1075 1030 990 4495 3953 3560 3017 2654 2390 2787 2025 7893 1782 1686 1604 1532 1468 T411 8077 7104 6397 5422 4769 4294 3930 3640 3401 3201. 30312883 - - - • - - 9830 ' 8712 7894 6756 5988 5425 499j 4643 4357 411- - -5 3908 372.. 2753 ...263�-_ _25.36 9 3571 3480 3305 22815 20067 18070 15315 13471 12130 11101 10281 9608 9043 8561 8143 7777 7452 7162 ] OOOETUh= I CFN J 6 Gastito Division ■ 11161 Ughn Parkway � Portland, TN 37148 Division 1116 Vaughn arkway Portland, TKI 37148 Toil Free: I.800. 62.020 3 Fax: 615.325.9407 Web: www.gas ite.corn E-n)Qii: C os—I'Ite@aas it'rnm Rev.6/2016 Maximum CapOcity of PE Pipe in Thousands of BTU per'Holur of Liquefied Pefroieurn Gas With a Gass Pressure of 71.0 in, VVC and a Pressur Rrap of 0.5 in. VVC (based on ra 1.52 specific grpvify gas s�lae�fi� 84 74 67 56 50 45 41 38 35 33 29 26 1073 720 571 484 425 383 325 286 257 235 218 204 192 169 752 1391 934 740 627 551 > 497 421 370 333 305 283 264 249 219 197 1983 1331 1054 893 786 708 600 528 475 435 403 376 354 311 280 3563 2391 1894 1605 1412 1272 1078 948 864 781 723 676 636 560 504 4724 3247 2608 2232 1978 1792 1534 1359 1232 1133 1054 989 934 828 750 10063 6755 5351 4535 3989 3592 3044 2678 241T 2207 2044 191❑ 7797 1581 1424 - F 1 !1 tT tt .!1 !! ilt • / !t 11 It 1[ ; f 22 20 18 15 13 12 11 70 9 9 8 8 8 7 7 129 113 102 86 76 68 63 58 54 51 48 46 44 42 40 167 147 132 112 99 89 87 75 70 66 63 60 57 54 52 238 209 786 160 140 126 116 107 100 94 89 85 81 78 75 427 376 338 287 252 227 208 192 T80 169 160 152 146 140 134 642 569 516 441 391 354 326 303 285 269 255 244 233 224 216 1207 1061 966 810 712 642 587 544 508 478 453 431 411 394 379 Maximum Capacity of PE Pipe In Thousands of BTU per i-tou of Llquefisd Petroleum Gas 5168TU1�=iCFH with a Gras Pressure of 2.0 psi and a Pressure rap of 1.0 psi (rased an a 1.52 speciBC gravity gas) 1 �j• . a T9b6 1319 T045 886 779 702 595 523 471 431 399 373 351 309 278- 11300 7586 6008 5092 4479 4033 3478 3007 2707 2478 2295 2744 20T8 1775 1599 14652 9835 7790 6602 5807 5229 4432 3898 3510 3213 2975 2780 2677 2302 2073 20877 14014 1T100 9408 8275 7451 6315 5555 5002 4578 4239 3962 3729 3280 2953 37514 25163 19946 16905 14869 13389 11348 9982 8988 5226 7618 7119 6700 5894 5307 43429 29848 23969 20515 18182 76474 14100 12496 11322 10417 9691 9092 8589 7612 6897 105963 7T131 56339 47750 42000 37820 32054 28194 25388 43234 21517 20108 18926 76647 14990 It Will •!t i} •tI F! 1!1 236 2(}7 787 158 139 125 175 106 49 93 88 84 80 77x �4+ 1355 1192 1073 910 800 720 659 671 571 37 508 484 462 443 425 1757 1545 T391 7179 1037 934 855 792 740 96 659 627 599 574 551 2503 2202 1983 1680 1478 1331 1218 1128 1054 2 939 893 853 818 786 4498 3956 3563 3019 2656 2391 2189 2027 1894 i783 1688 1606 1533 1469 1412 5903 5232 4740 4057 3596 3258 2997 2788 2616 71 2347 2239 2144 2060 7485 12705 11175 10063 8529 7502 6755 6182 5725 5350 5 D36 4767 4535 4331 4150 3988 Maximum CoPcroity of PC pipe in Thousands of BTU per Hour of Liquefred Pefroleum Ga2516BT!lh-1 CFFI with a Gas Pressure of 10.0 psi and a Pressure Pr p of 1.[1 psi (based on a 1.52 spe�i5c gravity gas) ■ • - ■ 1 1 2476 1662 7316 1114 981 884 749 b59 593 1 •+ It 14234 9555 7568 6414 5642 5080 4306 3787 3410 3121 2890 2707 2542 2236 2014 18455 72388 9812 8316 7315 6587 5583 4970 4422 4 7 3747 3502 3296 2899 2611 26296 17652 13983 11849 10423 9385 7954 6997 6300 57 6 5340 4990 4697 4131 3720 47252 31720 25123 21293 1872-9 16865 14294 12572 17321 10 6T 9595 8967 8440 7423 6685 53960 37087 29782 25489 22591 20469 17519 15527 14W 12 43 T2041 11297 10671 9458 8569 133476 89601 70967 60T48 52905 47640 40376 35514 31980 29 67 27104 25329 23840 20970 18882 • ■ r !t 1 t! Tt !1 .!t 11 !1 •1! [ t 1 297 261 235 799 i75 158 744 134 T25 11 171 106 101 97 93 1707 1501 1352 1146 1008 907 830 769 719 67 640 609 582 557 536 2213 1946 1753 1485 7306 1176 1077 997 932 87 830 790 754 723 695 3153 2773 2497 2116 1862 7676 1534 1421 1328 12 0 1183 7125 1075 1030 990 5665 4983 4487 3803 3345 504T 3272_ 2757 2553-. 2386_.._22 2726 7332{322 1937- -1851 1779 4 65�t] 5890 4468 4048 3724 3465 3251 3071 2976 2782 2664 2560 2466 T6004 14077 12676 10743 9449 8589 7787 7212 6739 634 6005 5712 5455 5227 5024 25168TUh-]CFH Ph: 1,800,662.02198 o Fax: 615.325.9407 e Web: www.gastife.com GAS PIPING INSTALLATIONIS TABLE 402.4(25) SCHEDULE 40 METALLIC PIPE Gas I Undiluted Propane I inlet pressure 10.0 P; Pressure Drop 1.0 psi Specific Gravity I.50 11VT hiI]E0 ti8> Pipe sizing between firsP stage {high-pressure regulator) and PIPE SIZZE (inch) second stage (low-pressure regulator). Narninal 14 314 1 1'J4 1% 2yZ 3 4 Actual10 0.622 0.824 i.049 i.380 1.610 2.0 7 2469 3A&8 4.026 Length (ft) Capacity in Thousands of Btu er Hour 10 20 3,320 2,290 61950 4,780 13,1OQ 9,400 26,900 18,500 44,3Q0 27,700 77, 53, 00 124,000 0 85,000 219,(H10 150,000 446,000 346,fl00 30 I.830 3,844 7,220 14,804 22,200 42,8 68,200 121,000 246,OQE1 40 I,570 3 28fl 5,1$4 12,7QQ 19,000 3b, 0 58,400 IQ3,000 21I,400 50 1,390 2,910 5,480 11,300 16,900 32,5)0 51,700 91,500 i87,000 60 1,2,50 2,640 4,970 10,200 15,300 29, 0 46,900 82,900 169,000 70 1,160 2,430 4,570 9,380 14,1D0 27,1 0 43.100 76,300 156,000 80 1,080 2,260 4,25Q 8,730 13,100 25,2)0 40,100 70,900 145,000 90 100 125 1,010 956 848 2,120 2,000 I,770 3,990 3,770 3,340 8,190 7,730 6,8SD 12,300 11,600 10,300 23, 22,3 19,8(0 0 37,700 0 3500 31 500 66,600 62,900 55,700 14000 128,40{] 114,000 150 768 1,610 3,020 6,210 9,300 17.9(0 28,600 50,500 103,000 175 706 1,480 2,780 �3,710 8,560 I6 26„300 46,500 94,700 200 657 1,370 2,590 5,320 7,960 15,3 24,400 43,200 88,100 250 300 350 400 450 582 528 486 452 424 I,220 1,100 I,024 945 886 2,290 1 2,080 1,9f0 I,780 L670 4,7Ifl 4,270 3,930 3,650 3,430 7,06D 6,440 5,880 5,470 5,140 13,60 i2,30 11,3 14 50 9,890 21,700 19,600 18,I00 16,804 15,8DD 38,300 34,700 31,900 29,7Q0 27,900 78,100 74,800 65,100 60,600 56,800 500 400 837 1,580 3,240 4,950 9,340 14,900 26,300 53,700 550 380 795 1,500 3,070 4,610 81870 14,100 25,000 51,000 600 363 759 1,430 2.930 4,400 9,460 13,500 23,900 41,611, 650 347 726 1,370 2,810 4,210 81110 12,900 22,900 46,600 700 334 699 L310 2,700 4,040 7,7901 112.400 21,900 44,800 750 321 672 1,270 2,600 3,900 7,500 1 12,000 21,inn 43,140 900 310 649 1,220 2,510 3,760 7,2401 1 11,504 2D,400 41,600 850 300 628 11180 2,430 3,640 7,OIfl 11?OD 19,800 4ff,300 900 291 609 1,150 2,360 3,530 6,800 10,800 19,200 39,10O 950 283 592 1,I10 2,290 3,430 6,640 10,500 18,600 37,900 I,000 275 575 1,080 2,230 3,330 6,420 10,200 18,I00 36,900 11100 261 546 1,030 2,110 3,170 6,100 9,720 17,200 35,000 1,200 249 521 982 2,020 3,020 5,820 9,270 16,400 33,400 1,300 239 499 940 1,930 2,990 5570 8,880 15,700 32,000 L400 229 480 903 1,850 2,780 5,350 8,530 15,100 30,801) 1,500 221 462 371 1,790 2,680 5,16D 8,220 14,500 29,600 1,600 213 446 $40 1,730 2,590 4,980 7.940 14,000 29,600 1,700 206 432 813 1,670 2,50f) 4,320 7,690 I3,600 27,700 1,800 200 419 789 1,620 2,430 4,670 7,450 13,200 26,900 I1900 194 447 766 1.570 2�360 4,540 7,230 12,800 26,100 2,000 189 395 745 1,530 2,290 4,4IQ 7,030 I2,400 25,400 p'or S'1: 1 inch = 25A mm, 1 foot = 304.8 mm, I pound per square inch = 6.895 kpa, 1-inch water column = 0.2488 kPa, 1 Biitish thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0,0293 ni'Ih, I degree = 0. 0 1741 rad. Note: A it tableeentries have been rounded La drree significant•digits. • .. _ . _ .. - .... 50 FLORIDA BUILDING CODE - FUEL GAS, 6th EDITION (2017) J