HomeMy WebLinkAboutStructural CalculationsJob Title: 7-Eleven #38944
C .
Indrio Rd & Kings Highway
Fort Pierce, FL
Job No. 20-1326110
S A. L E S A N D Calc'd By P.,Brennan, PE Date 20-Feb-2020
MANUFACTURING
.. KERTIFIED
FABRICATOR
STRUCTURAL CALCULATIONS
FOR
7-Eleven, Inc. - Cypress Waters
K T • BRf'''%
QQ.:.••��C E NSF..y
o,�F• �'c
• OR10
''1SS�4NAL
''���l/lllllll�
Page 1
CODES: 2017 Florida Building Code, ASCE 7-10, AISC-15th. Edition & ACI 318-14
The Canopy is classified as a Cantilever Column System detailed to conform to the requirements of Steel
Ordinary Cantilever Column System (ASCE 7-10 Table 12.2-1) and has been designedl using
Equivalent Lateral Force Procedure (ASCE 12.8)
Load Transfer System in Canopy
Loads are transferred from the Fascia System to the interlocking Deck Pans. The Deck Pans transfer the
load through the Deck Clips to Wide Flange Purlins. The purlins transmit the load to the Header beam.
the header beams carry the load to the Cantilever Columns. Finally the columns transmit the loads to
foundation through baseplate and anchor bolts.
Canopy Specifications
Length
119.00
ft
Total Height of Canopy
17.50
Width
36.00
ft
Number of Column Rows
2
Fascia Height
3.00
ft
Number of Columns/ Row
4
Mansard Roof Height
0.00
ft
Mansard Pitch
0
:12
Total Number of Columns
8
Canopy Clear Height
14.50
ft
Canopy Dead Load Calculations:
Purlin Beam -
W12x26
Weight
26 1 plf
Header Beam -
W14x34
Weight
34 ; plf
Column -
HSS12x12x1/4
Weight
39.431 plf
Deck weight
5.00
psf
Colateral weight
0.00
psf
Total weight
5.00
psf
Length of Canopy
L
119.00
ft
Width of Canopy
B
36.00
ft
Area of Canopy
A
4284.00. ,.,
sgft
Purlin Beam -
119.00
ft
No 4 Wt. 12376 lb
Header Beam -
36.00
ft
No 4 Wt. 4896 lb
Column -
Height
16.18
ft
No 8 Wt. 5104.87 lb
Thus Total Dead load
DL
10.22
psf
�41111;17;,
" I
Vr
Page 2
Roof Live Load Arrangement
ASCE Table 4-1 Foot note "n" since the roof live load for the purlin are not reduced below 20 psf
Applying loads to adjacent spans or alternation span is not required
Lr= 20 psf
At= 594 sgft F= 0.00
R1= 0.61 R2= 1
Reduced Live load (Lr) = 12.1 psf
for columns and footings
Snow Load
Ground Snow Load
Pg
0.00
psf
Thermal Factor
Ct
1.20
Unheated and Open Air Structure (ASCE Table 7-3)
Important Factor
IS
1.00
Risk Category. II - (ASCE Table 1.5-1 & Table 1.5-2)
Exposure Factor
Ce
1.00
Terrain Category C - (ASCE Table 7-2)
Flat Roof Snow Load
Pf _
0.00
psf
Rain on Snow Surcharge
0.00
psf
Balanced Snow Load
0.00
psf
J
Page 3
r
SEISMIC DESIGN
SITE PARAMETER
Site Class D i
The maximum Considered (Mapped) Spectral Acceleration (ASCE sec. 11.4.1)
at short periods
SS = 0.057
at 1 sec period
S1= 0.030
Site Coefficient
for short period (Ss) (ASCE Table11.4.1)
Fa = 1.600
for 1 sec period (Sl) (ASCE Table11.4.2)
F,, 2.400
Design Spectral Responses Acceleration
for short period (Eq. 11.4-1)
SMS= Fax S5=
0.091
for 1 sec. period (Eq. 11.4-2)
SM1= Fvx S1=
0.072
The design spectral response acceleration (Sec)
for short period (Eq. 11.4-3)
SDS= 2/3 x SMS=
0.061
for 1 sec. period (Eq. 11.4-4)
SD1= 2/3 x SM1=
0.048
,Seismic Design Category
Occupancy Risk Category (Table 1.5-1)
II
Seismic Design Category based on 1 sec period responses acceleration (ASCE
11.6)
SDC
A
Seismic Response Coefficient
the response modification factor (ASCE,Table 12.2-1)
Steel Ordinary Cantilever Column. System
R=
1.25
The occupancy importance factor (ASCE Table 1.5-2)
1=
1.00
CS SDS/(R/1) =
0.05
Total Canopy Dead Load
DL =
10.22
psf
Area of Canopy
4284
sqft
Seismic Weight
W = DL * A =
43.8
kips
Seismic Force (Eq.)
V = CSW
2.13
kips
from previous page 2
from previous page 2
Page 4
Wind Design
ASCE 7-10 Wind Forces (Chapter 27 Directional Procedure)
Open Building with Monoslope Roof (Section 27.4.3) with fascia panels as parapets (Section 27.4.5)
Basic Wind Speed V = 160 mph
Vasd = 124 mph
Exposure (Section 26.7) C
Risk Category II
Gust effect factor (section 26.9) the canopy's fundamental natural frequency is greater that 1Hz, and is therefore
rigid as defined in section 26.2, therefore as per section 26.9.1
G = 0.85
as per table (26.6-1) Directional factor Kd 0.85
Wind Velocity pressure section 27.3.2
(Eq. 27.3-1) qZ = .00256 .K=. K:t. Kd. V` For Open Building
3- sec guest -speed power law exponent from (table 6-2)
a =
9.50
Nominal height of the atmospheric boundary layer used (Table 6-2)
Zg =
900.00
ft
Fascia Height + mansard height =
3.00
ft
Canopy clear height (H) =
14.50
ft
h
16.00
ft
KZ= Velocity pressure coefficient= Kh= 2.01(h/zg)A2/a
0.86
K:t =Topographic Factor
K:t
1.00
Thus q= = velocity pressure
q= =
47.93
psf
Wind design Load for Fascia (Parapet)
parapet height h = Clear height + fascia height =
h
17.50
ft
Kp= Velocity pressure coefficient = Kp= 2.01(h/zg)A2/a
0.88
Thus qp=.00256.Kp.KZt.Kd. V`
qp=
48.85
psf
MWFRS Horizontal Forces (Section 27.4.5)
parapet wind pressure Pp = gpGCpn
Section 27.4.5 Windward
GCpn =
1.50
Leeward
GCpn =
-1.00
Wind ward
pp =
73.27
psf
Leeward
pp =
-48.85
psf
Wind Shear for maximum Tributary Area to the Column Pw = pp*A
Maximum Tributary Area of Single Column C2, A = hx B
fascia Height
h
3.00
ft
Tributary Width
B
33.00
ft
A
99.00
sq. ft
Thus
Pw
6.04
kips
Wind Uplift/ Downward for Deck
MWFRS for open Building Figure 27.4-4
When Flat Roof
Clear Leeward or windward Flow control design (obstructions always <SO%)
Worst case for uplift CN
Downward wind CN
q = gGCn uplift
cidownward
Uplift Force Puplift = (Uplift Area* Uplift pressure quplift) Puplift=
Uplift Area= Max Tributary column Length * Max. Cantilever Width
Max Tributary column Length = L
B
Puplift =
-1.10
1.20
-44.82 psf
48.89 psf
A* quplift
33.00 ft.
18.00 ft.
26.62 kips
for single Column
Page 5
Fascia Frame Check
Clear Height:
Fascia Height:
Frame Spacing:
Edge Distance:
Gutter Width:
14.50 ft
A=
8 in E= 10 in @ Sides
3.00 ft
B=
12 in E= 16 in @ Ends
48 in o.c.
61=
10 in
3.50 ft
C=
6 in
8 in
D=
26 in
L%z
c> Single or Double Brace II,
(NS only) (NS & FS)
m 5
V
2
a m 2 3 D
Y Z
a �
E E
_ .
U 4 Z
GUTTER
I1� EDGE DISTANCE
Forces: (Due to the light weight of the fasica, wind shall control over Seismic.)
Fascia weight (incl frames) = 4 psf
pp = 73.27 psf
Fascia Frame Design:
C Section: 20ga x 13/4" x 15/8" C M/()=
0.886 k-in P/Q= 1.822 k
Frames @ 4.00 ft O.C.
Single or Double Brace? Single Brace
Vertical Member XY:
M = 0.273 k-in < 0.886 k-in
i
Brace XZ:
Length = 28.7 in
P = 0.196 k < 1.822 k
Check Screws:
Screw Capacity:
#8 Tek = 174 lb Shear ---------
ESR-2196
#12 Tek = 200 lb Shear (Lapped 20ga)
#12 Tek = 315 lb Shear (20ga to 1/4")
ESR-1976
#1/4 Tek = 430 lb Shear (Lapped 20ga)
#1/4 Tek = 115 Ib Tension (Pullout) 20ga I
Screw
Trib. Area Fa
Fc
Page 6
0
Checking Roofing Deck System & Beam Clips
Materials Specifications: Pan Deck by Metal Works; 3"x16" 20 Ga
Metal Works Deck Clip =12 Ga Galy. Steel Clip
NCA# 18-0918.09
Deck Capacity - 40ksi -20ga
Width = 16.00 in
Mapos = 7.93 k-in
Maneg = -6.51 k-in
Design Loads
D 5.00 psf
Lr or S 20.00 psf
W-% 47.93 psf
Roof Wind Design Pressures (psf) C&C Figure 30.8-1
Z3
Z2
Z1
73 -69
73 -69
1 49 -45
Check Deck at 9'-8" Span
Span Length-
9.67 -
ft
For Gravity (Downward) Check
Zone 3 Net Pressure Coefficient Figure 30.8-1
Cn
1.80
ASD Total Load = D+.75(Lr or S)+.75*0.6*W =
Wtotaldown
53.00
psf
Mu
7.31
k-in
Mn/Q > Mu
t3tmmi - -
For Uplift Check
Zone 3 Net Pressure Coefficient Figure 30.8-1
Cn
-1.70
ASD total Load = 0.6D+0.6*W =
WtotaioPue
-38.56
psf
Mu
-5.32
k-in
Mn/Q > Mu
(� ��� '
#�,a'�:�°fie.
Check Deck at 3'-6" Cantilever
L
3'.50
ft
Zone 3 Net Pressure Coefficient Figure 30.8-1
For Gravity (Downward) Check
Cn
2.40
ASD Total Load = D+.75(Lr or S)+.75*0.6*W =
Wtotal down
64.00
psf
Moment Required = wu*Iz/2 =
Mu
-6.27
k-in
Mn/Q > Mu
I
For Uplift Check
Zone 3 Net Pressure Coefficient Figure 30.8-1
Cn
-3.30
ASD total Load = 0.6D+0.6*W =
Wtotal uplift
-77.67
psf
Moment Required = wu*Iz/2 =
Mu
7.61
k-in
Mn/Q>Mu
+
Beam/Deck Clip Capacity Checks:
Deck clip yield capacity
941 lbs.
Deck Allowable Capacity 0=1.67
563 lbs.
Single or Double Clamped
Double
Seismic Load Calculations:
Total Dead Load
5.00 psf
Seismic Response Coefficient Cs
0.05
Horizontal Shear on Deck V = Cs*W
0.24 psf
Deck Clip Spacing Ll
1.33 ft
16" o.c.
Clip Trib L2
9.67 ft
Assume lateral capacity of clip is 20% of clamp load.
Seismic Load Transfer to Bolt = V*Ll*L2 =
2.19 lb <
225 IbCIK
W
Wind Transfer to Bolt = Pp*Hf*L1/#purlins
73.09 lb <
225 Ib
tOK 'e"''
Uplift Check Wu = Wtotal * Ll*L2
495.74 lb <
1127 lb
(�
Gravity Load Wu = Wtotal * L1*1-2
681.44 lb <
1127 lb
� c
Page 7
Loads input for Enercalc Solutions: Purlin Beam Center Span (Trib = 9.667')
All loads applied correspond to the largest tributary area and largest reaction; therefore the analysis is based on
applying conservative loads to the beams, columns, and connection design.
Purlin Beam = W12x26 Material: A992 Fy= 50 ksi
Loads from Decking
D 5.00 psf
Lr 20.00 psf
S
0.00
psf
Wdn
48.89
psf
Ev
0.09
psf
Lateral Loads
Wh
Eh
Maximum Tributary width for purlin
91.59
plf
3.62
plf
9.667
ft
Purlin Load Combinations for Biaxial Bendine (ASD
Stress Ratio
Strong Axis Weak Axis
D
0.116
Lr
0.302
S
W
0.738 0.612
E
0.001 0.024
ASCE 7-10 Load Combinations (ASD
1. D
2. D+L
3. D+(Lr or S)
4. D + 0.75L + 0.75(Lr or S)
`5a. D+0.6*W
5b. D+0.7E
6a. D + 0.75L +0.75(0.6W) + 0.75(Lr or S)
6b. D + 0.75L +0.75(0.7E) + 0.75(Lr or S)
7. 0.6D+0.6*W
8. 0.6D + 0.7E
STRONG
WEAK
COMBINED
1.
0.116
0.000
0.12
2.
0.116
0.000
0.12
3.
0.418
0.000
0.42
4.
0.343
0.000
0.34
5a.
0.559
0.367
0.93
5b.
0.117
0.017
0.13
6a.
0.675
0.275
0.95
6b.
0.343
0.013
0.36
7.
0.512
0.367
0.88
8.
0.070
0.017
0.09
ASCE 7-10 CH. 12.4.3.2 SPECIAL SEISMIC LOAD COMBINATIONS (ASD)
5a. (1.0 + 0.14Sds) D + 0.70Qe O= ! 1.25
6. (1.0 + 0.105Sds)D + 0.525DQe + 0.75S Sds= 0.061
8. (0.6 - 0.14Sds) D + 0.70Qe
Controls <=1.0 Ok
STRONG
WEAK
COMBINED
5a. 0.118
0.021
0.14 Controls <=1.2 Ok
6. 0.117
0.016
0.13
8. 0.069
0.021
0.09
Page 8
Project Title: 7-Eleven #38944
Engineer:
Project ID: 20-1326RO
Project Descr:36x119 Canopy
DESCRIPTION: Purlin Strong Axis (Single Span Trib = 9.667')
CODE REFERENCES
Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set: ASCE 7-10
Material Properties
Analysis Method: Allowable Strength Design Fy : Steel Yield : 50.0 ksi
Beam Bracing : Beam bracing is defined Beam -by -Beam E: Modulus: 29,000.0 ksi
Bending Axis : Major Axis Bending
Unbraced Lengths
Span # 1, Braced @ 1/4 Points
D(0.04834) Lr(0.1933) W(0.4726) E(0.000870)
W12x26
Span = 33.0 ft
Applied Loads
Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Loads on all spans...
Uniform Load on ALL spans : D = 0.0050, Lr =
0.020, W = 0.04889, E = .000090
ksf, Tributary Width = 9.667 ft
DESIGN SUMMARY
® +
- ------------- ----------------......---------------------------
Maximum Bending Stress Ratio =
------------------------------ -....._.. -------------- ......... _ ._........_.._.._........._......_.........._..._.....__.:_.........._._......._............._.._..._.........
----........._- -
0.738: 1 Maximum Shear Stress Ratio -
0.139 : 1
Section used for this span
W12x26
Section used for this span
W12x26
Ma: Applied
64.335 k-ft
Va :Applied
7.798 k
Mn / Omega: Allowable
87.218 k-ft
Vn/Omega : Allowable
'56.120 k
Load Combination
W Only
Load Combination
W Only
Location of maximum on span
16.500ft
Location of maximum on span
0.000 ft
Span # where maximum occurs
Span # 1
Span # where maximum occurs
Span # 1
Maximum Deflection
I Max Downward Transient Deflection
2.141 in Ratio =
184>=180
Max Upward Transient Deflection
0.000 in Ratio =
0 <180
Max Downward Total Deflection
1.958 in Ratio =
202 >=180
Max Upward Total Deflection
0.000 in Ratio =
0 <180
Vertical Reactions
Load Combination Support 1 Support 2
Overall MINimum
0.014
0.014
D Only
1.227
1,227
+D+Lr
4.417
4.417
+D+0501-r
3.620
3.620
+D+0.60W
5.906
5.906
+D+0.70E
1.237
1.237
+D+0.750Lr+0.450W
7.129
7.129
+D+0.450W
4.736
4.736
+D+0.5250E
1.235
1.235
+0.60D+0.60W
5.415
5.415
+0.60D+0.70E
0.746
0.746
Lr Only
3.190
3.190
W Only
7.798
7.798
E Only
0.014
0.014
Support notation : Far left is #1 Values in KIPS
Page 9
Project Title: 7-Eleven #38944
Engineer:
Project ID: 20-1326RO
Project Descr:136x119 Canopy
DESCRIPTION: Purlin Weak Axis (Single Span Trib = 9.667')
CODE REFERENCES
Calculations perAISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set: ASCE 7-10
Material Properties
Analysis Method: Allowable Strength Design Fy : Steel Yield: 50.0 ksi
Beam Bracing : Completely Unbraced E: Modulus: 29,000.0 ksi
Bending Axis: Minor Axis Bending
W(0.09159) E(0.003620)
3plied Loads
Beam self weight NOT internally calculated and added
Loads on all spans...
Uniform Load on ALL spans: W = 0.09159, E = 0.003620 k/ft
DESIGN SUMMARY
iviaximum isenaing caress Katio =
Section used for this span
Ma: Applied
Mn / Omega: Allowable
Load Combination
Location of maximum on span
Span # where maximum occurs
Maximum Deflection
Max Downward Transient Deflection
Max Upward Transient Deflection
Max Downward Total Deflection
Max Upward Total Deflection
Vertical Reactions
Load Combination
Support 1
Overall MA)(imum
1.511
Overall MINimum
0.031
+0.60W
0.907
- E Only * 0.70
0.042
+0.450W
0.680
E Only * 0.5250
0.031
W Only
1.511
E Only
0.060
W 12x26
Span = 33.0 ft f
....... _........_._.---- _..__.... .............................. ...................................................... ...__..._._...... ........ - .... ............. ___-------- ............._........... _.................. _....
Service loads entered. Load Factors will be applied for calculations.
U.blZ: "I Maximum Jnear 5iress Katio =
W12x26
Section used for this span
12.468 k-ft
Va : Applied
20.384 k-ft
Vn/Omega : Allowable
W Only
Load Combination
16.500ft
Location of maximum on span
Span # 1
Span # where maximum occurs
I `
4.890 in Ratio =
80>=
0.000 in Ratio =
0 >=
2.936 in Ratio =
135 >= i
0.000 in Ratio =
0 >=
_..__ _..__._.....__...._........_._...._. _........._.._........-.............. ............. ........... ........._............
Support notation : Far left is #1
Support
1.511
0.031
0.907
0.042
0.680
0.031
1.511
0.060
Values in KIPS
W 12x26
1.511 k
98.648 k
W Only
0.000 ft
Span # 1
Page 10
Loads input for Enercalc Solutions: Purlin Beam End Span w/ Cant (Trib = 9.667')
All loads applied correspond to the largest tributary area and largest reaction, therefore the analysis is based on
applying conservative loads to the beams, columns, and connection design.
Purlin Beam = W12x26 Material: A992 Fy= 50 ksi
Loads from Decking
D
5.00
psf
Lr
20.00
psf
S
0.00
psf
Wdn
48.89
psf
Ev
0.09
psf
Lateral Loads
Wh
91.59
plf
Eh
3.62
plf
Maximum Tributary width for purlin .
9.667
ft
Purlin Load Combinations for Biaxial Bending
(ASD)
Stress Ratio Strong Axis
Weak Axis
D 0.098
Lr 0.255
S
W 0.622
0.504
E 0.001
0.020
ASCE 7-10 Load Combinations (ASD
1. D
2. D+L
3. D+(Lr or S)
4..D + 0.75L + 0.75(Lr or S)
5a. D + 0.6*W
5b. D+0.7E
6a: D+0.75L+0.75(0.6W)+0.75(LrorS)
6b. D+0.75L+0.75(0.7E)+0.75(LrorS)
7. 0.6D+0.6*W
8. 0.6D + 0.7E
STRONG
WEAK
COMBINED
1.
0.098
0.000
0.10
2.
0.098
0.000
0.10
3.
0.353
0.000
0.35
4.
0.289
0.000
0.29
5a.
0.471
0.302
0.77
5 b.
0.099
0.014
0.11
6a.
0.569
0.227
0.80
6b.
0.290
0.011
0.30
7.
0.432
0.302
0.73
8.
0.060
0.014
0.07
ASCE 7-10 CH. 12.4.3.2 SPECIAL SEISMIC LOAD COMBINATIONS (ASD)
5a. (1.0 + 0.14Sds)D + 0.70Qe O= 1.25
6. (1.0 + 0.105Sds) D + 0.525()Qe + 0.75S Sds= 0.061
8. (O.t - 0.145ds)D + 0.7QQe
Controls <=1.0 Ok
STRONG
WEAK
COMBINED
5a. 0.100
0.018
0.12 Controls <=1.2 Ok
6. 0.099
0.013
0.11
8. 0.059
0.018
0.08
G
Page 11
Project Title: 7-Eleven #38944
Engineer:
Project ID: 20-1326RO
Project Descr:36x119 Canopy
DESCRIPTION: Purlin Strong Axis (End Span w/ Cant. Trib = 9.667')
CODE REFERENCES
Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set: ASCE 7-10
Material Properties
Analysis Method: Allowable Strength Design Fy : Steel Yield : 50.0 ksi
Beam Bracing : Beam bracing is defined Beam -by -Beam E: Modulus: 29,000.0 ksi
Bending Axis : Major Axis Bending
Unbraced Lengths
Span # 1, Fully Braced
Gnnn $ 9 Rrnrari n 1 /d Pnintc
lied Loads
..........................._..__..._>._........... ....................,,...................._.._.....__....................._........................_1........
i
D(0.04834).Lr(0.1933) W(0.4726) E(0.000870
Service loads centered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Loads on all spans...
Uniform Load on ALL spans: D = 0.0050, Lr = 0.020, W = 0.04889, E = .000090 ksf, Tributary Width = 9.667 ft
DESIGN SUMMARY
rs •
... . ........................................
Maximum BendingStress Ratio
0.622: 1 Maximum
_ . ...
Shear Stress Ratio -
0.152
Section used for this span
W12x26
Section used'for this span
W12x26
Me: Applied
53.061 k-ft
Va : Applied
8.514 k
Mn / Omega': Allowable
85..258 k-ft
Vn/Omega : Allowable
56.120 k
Load Combination
W Only
Load Combination
W Only
Location of maximum on span
17.952ft
Location of maximum on span
10.000 ft
Span # where maximum occurs
Span # 2
Span # where maximum occurs
Span # 1
Maximum Deflection
Max Downward Transient Deflection
1.671 in Ratio =
236 >=180
Max Upward Transient Deflection
-1.135 in Ratio =
211 >=180
Max Downward Total Deflection
1.530 in Ratio =
259 >=180
Max Upward Total Deflection
-1.037 in Ratio =
231 >=180
Vertical Reactions Support notation : Far left is #1' Values in KIPS
Load Combination
Support 1 Support 2
Support 3
Overall MAMmum
13.241
7.082
Overall MINimum
0.024
0.013
D Only
2.084
1.115
+D+Lr
7.500
4.012
+D+0.750Lr
6.146
3.287 j
+D+0.60W
10.028
5.364
+D+0.70E
2.101
1.124
+D+0.750Lr+0.45OW
12.104
6.474
+D+0.450W
8.042
4.301
+D+0.5250E
2.096
1.121
+0.60D+0.60W
9.194
4.918
+0.60D+0.70E
1.267
0.678
Lr Only
5.416
2.897
W Only
13.241
7.082
E Only
0.024
0.013
Page 12
Project Title: 7-Eleven #38944
Engineer:
Project ID: 20-1326RO
Project Descr:36x119 Canopy
DESCRIPTION: Purlin Weak Axis (End Span w/ Cant Trib = 9.667')
CODE REFERENCES
Calculations perAISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set: ASCE 7-10
Material Properties
Analysis Method: Allowable Strength Design Fy : Steel Yield : 50.0 ksi
Beam Bracing : Completely Unbraced E: Modulus: 29,000.0 ksi
Bending Axis: Minor Axis Bending
W12x26
Span = 10.0 ft
W(0.09159) E(0.003620)
W12x26
Span = 33-0 ft
_..__...... ................... ........ _...... _.._......... _...................................... _.......................... _..........................
Applied Loads
..__..._.._................................._..................
_._.._..... _........ ...................................
............... ........ .................. ..........__................ -._..__.......... ......--...................... __..._.... ......_._
Service loads entered. Load Factors will be applied for calculations.
Beam self weight NOT internally calculated and added
Loads on all spans...
Uniform Load on ALL spans: W = 0.09159,
E = 0.003620 k/ft
DESIGN SUMMARY
b
........... ........._.._......... .................. . -- :--------.._.._........_....._._..._...._._....._..................
Maximum Bending Stress Ratio =
-
..._.____.._._.....-._._._......_......._.._......_................._........._........................................._........._..........._..........._............_.................__...__........._............_._...__......_.._.._.....:...._....._.._._._......._._.__..
0.504: 1 Maximum Shear Stress Ratio =
0.017 : 1
Section used for this span
W12x26
Section used for this span
W12x26
Ma: Applied
10.283 k-ft
Va : Applied
1.650 k
Mn / Omega : Allowable
20.384 k-ft
Vn/Omega : Allowable
98.648 k
Load Combination
W Only
Load Combination
W Only
j Location of maximum on span
17.952ft
Location of maximum on span
10.000 ft
Span # where maximum occurs
Span # 2
Span # where maximum occurs
Span # 1
Maximum Deflection
Max Downward Transient Deflection
3.808 in Ratio =
103>=
Max Upward Transient Deflection
-2.593 in Ratio =
92 >=
Max Downward Total Deflection
2.295 in Ratio =
173 >_
Max Upward Total Deflection
-1.556 in Ratio =
154 >=
Vertical Reactions
Support notation: Far left is#1 Values in KIPS
Load Combination Support 1
Support 2
Support 3
Overall MAXrnum
2.566
1.372
Overall MINimum
0.053
0.028
+0.60W
1.540
0.823
E Only' 0.70
0.071
0.038
+0.450W
1.155
0.618
E Only' 0.5250
0.053
0.028
W Only
2.566
1.372
E Only
0.101
0.054
Page 13
Loads input for Enercalc Solutions: Header Beam
Loads shown are for the maximum purlin tributary area. For all other purlins, these loads will be scaled to
account for the proper tributary areas.
Header Beam - W14x34 Material: A992
Fy= 50 ksi
Loads from Purlins
D
2.34
kips
Lr
6.09
kips
S
0.00
kips
Wdn
14.88
kips
Ev
0.03
kips
Lateral Loads-
Wh
0.89
kips
Eh
0.11
kips
Seismic for Beam Ev
0.41
plf
Eh
1.65
plf
Header Load Combinations for Biaxial Bending
(ASD)
f
Stress Ratio Strong Axis
Weak Axis
D 0.163
Lr 0.371
S
W 0.906
0.245
E 0.002
0.036
ASCE 7-10 Load Combinations (ASD)
1. D
6a. D+0.75L+0.75(0.6W)+0.75(LrorS)
2. D+L
6b. D+0.75L+0.75(0.7E)+0.75(LrorS)
3. D+(LrorS)
7. 0.61)+0.6*W
4. D + 0.75L + 0.75(Lr or S)
8. 0.6D+0.7E
5a. D+0.6*W
5b. D+0.7E
STRONG
WEAK
COMBINED
1. 0.163
0.000
0.16
2. 0.163
0.000
0.16
3. 0.534
0.000
0.53
4. - 0.441
0.000
0.44
5a. 0.707
0.147
0.85
5 b. 0.164
0.025
0.19
6a. 0.849
0.110
0.96 Controls <=1.0 Ok
6b. 0.442
0.019
0.46
7. 0.641
0.147
0.79
8. 0.099
0.025
0.12
ASCE 7-10 CH. 12.4.3.2 SPECIAL SEISMIC LOAD COMBINATIONS (ASD)
5a. (1.0+0.145ds)D+0.7f)Qe
Q= 1.25
6. (1.0 + 0.105Sds)D + 0.525QQe + 0.75S
Sds= 0.061 1
8. (0.6-0.14Sds)D+0.711Qe
STRONG
WEAK
COMBINED
5a. 0.166
0.032
0.20 Controls <=1.2 Ok
6. 0.165
0.024
0.19
8. 0.098
0.032
0.13
Page 14
Project Title: 7-Eleven #38944
Engineer:
Project ID: 20-1326R0
Project Descr:36x119 Canopy
DESCRIPTION: Header Strong Axis
CODE REFERENCES
INC.1983.2020, Build:12.20.1.31 ,
Calculations per AISC 360-10, IBC 2015,.CBC 2016, ASCE 7-10
Load Combination Set: ASCE 7-10
Material Properties
Analysis Method: Allowable Strength Design Fy : Steel Yield : 50.0 ksi
Beam Bracing : Beam bracing is defined Beam -by -Beam E: Modulus: 29,000.0 ksi
Bending Axis : Major Axis Bending
Unbraced Lengths
Span # 1, Defined Brace Locations, First Brace at 3.50 ft, Second Brace at ft, Third Brace at ft
Span # 2, Defined Brace Locations, First Brace at 1.167 ft, Second Brace at 10.833 ft, Third Brace at ft
Span # 3, Defined Brace Locations, First Brace at 8.50 ft, Second Brace at ft, Third Brace at ft
)plied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Loads on all spans...
Uniform Load on ALL spans: E = 0.000410 k/ft
Load(s) for Span Number 1
Point Load: D = 2.019, Lr = 5.247, W=12.827, E = 0.0240 k @ 3.50 ft, (From Purlin (Trib = 8.333))
Load(s) for Span Number 2
Point Load : D = 2.342, Lr = 6.087, W=14.880, E = 0.0270 k @ 1.167 ft, (From Purlin (Trib = 9.667'))
Point Load : D = 2.342, Lr = 6.087, W=14.880, E = 0.0270 k @ 10.833 ft, (From Purlin (Trib = 9.667'))
Load(s) for Span Number 3
Point Load : D = 2.019, Lr = 5.247, W=12.827, E = 0.0240 k @ 8.50 ft, (From Purlin (Trib = 8.333'))
DESIGN SUMMARY
Maximum Bending Stress Ratio =
Section used for this span
Ma: Applied
Mn / Omega: Allowable
Load Combination
Location of maximum on span
Span # where maximum occurs
Maximum Deflection
Max Downward Transient Deflection
Max Upward Transient Deflection
Max Downward Total Deflection
Max Upward Total Deflection
Vertical Reactions
U.UUb : 'I iviaximum snear stress Katlo =
W14x34
Section used for this span
109.030 k-ft
Va : Applied
120.297 k-ft
Vn/Omega : Allowable
W Only
Load Combination
12.000ft
Location of maximum on span
Span # 1
Span # where maximum occurs
1.926 in Ratio =
149>=
-0.293 in Ratio =
490 >_
1.802 in Ratio =
160 >_
-0.275 in Ratio =
524 >_
Support notation : Far left is #1 Values in KIPS
t
W14x34
14.880 k
79.80 k
W Only
10.880 ft
Span # 2
Load Combination
Support 1 Support 2
Support 3 Support 4
Overall MAXimum
27.707
27.707
Overall MINimum
0.058
0.058
D Only
4.973
4.973
+D+Lr
16.307
16.307 Page 15
+D+0.750Lr
13.474
13.474
Project Title: 7-Eleven #38944
Engineer:
Project ID: 20-1326RO
Project Descr:36x119 Canopy
DESCRIPTION: Header Strong Axis
Vertical Reactions Support notation : Far left is #1' Values in KIPS
Load Combination
Support Support
Support Support
+D+0.60W
21.597
21.597
+D+0.70E
5.014
5.014
+D+0.750Lr+0.45OW
25.942
25.942
+D+0.450W
17.441
17.441
+D+0.5250E
5.004
5.004
+0.60D+0.60W
19.608
19.608
+0.60D+0.70E
3.025
3.025
Lr Only
11.334
11.334
W Only
27.707
27.707
E Only
0.058
0.058
Page 16
Project Title: 7-Eleven #38944
Engineer:
Project ID: 20-1326RO
Project Descr:36x119 Canopy
DESCRIPTION: Header Weak Axis
CODE REFERENCES
Calculations perAISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set: ASCE 7-10
Material Properties
Analysis Method: Allowable Strength Design Fy : Steel Yield : 50.0 ksi
Beam Bracing : Completely Unbraced E: Modulus: 29,000.0 ksi
Bending Axis: Minor Axis Bending
W(0.763 E(0.098)
W(0.885 E(0.114) E 0.001650 W(0.885) E(0.114)
i
W(0.763 E(0.098)
.,
� ,... .
;y,y
m3',
W14x34
W14x34
W14x34
Span = 12.0 ft
Span = 12.0 ft
Span = 12.0 ft
)plied Loads
Beam self weight NOT internally calculated and added
Loads on all spans...
Uniform Load on ALL spans : E = 0.001650 k/ft
Load(s) for Span Number 1
Point Load: W = 0.7630, E = 0.0980 k @ 3.50 ft, (From Purlin (Trib = 8.333'))
Load(s) for Span Number 2
Point Load : W = 0.8850, E = 0.1140 k @ 1.167 ft, (From Purlin (Trib = 9.667'))
Service loads entered. Load Factors will be applied for calculations.
Point Load : W = 0.8850, E = 0.1140 k @ 10 833 ft, (From Purlin (Trib = 9.667'))
Load(s) for Span Number 3
Point Load : W = 0.7630, E = 0.0980 k @ 8.50 ft, (From Purlin (Trib = 8.333'))
DESIGN SUMMARY
.:....... .... .... ......... ..... ................... _ ..
Maximum Bending Stress Ratio =
Section used for this span
Ma: Applied
Mn / Omega: Allowable
Load Combination
Location of maximum on span
Span # where maximum occurs
Maximum Deflection
Max Downward Transient Deflection
Max Upward Transient Deflection
Max Downward Total Deflection
Max Upward Total Deflection
_---_._..._._._....._...._--- ....................... .................- ---
Vertical Reactions
0.245: 1
Maximum Shear Stress Ratio =
0.007 : 1
W14x34
Section used for this span
W14x34
6.486 k-ft Va : Applied
0.8850 k
26.447 k-ft Vn/Omega : Allowable
122.850 k
W Only
Load Combination
W Only
12.000ft
Location of maximum on span
10.880 ft
Span # 1
Span # where maximum occurs
Span# 2
1.671 in
Ratio = 172 >=
-0.255 in
Ratio = 564 >_
1.003 in
Ratio = 287 >=
-0.153 in
Ratio = 941 >_
........_..............._.._.......
....__.._.__._..._.......... _... ........ .._.:...__............_...._................_.................................................
Support notation :'Far left is #1 Values in KIPS
...................
Load Combination Support 1 . Support 2 Support 3. Support4
Overall MAXimum 1.648 1.648
Overall MINimum 0.127 0.127
+0.60W
0.989
0.989
E Only * 0.70
0.169
0.169
+0.450W
0.742
0.742
E Only * 0.5250
0.127
0.127
W Only
1.648
1.648
E Only
0.242
0.242
Page 17
TYP.
PURLIN
BEAM
Purlin-Header Connection Design (ASD)
HEADER
STIFFENER PLATE
BEAM /
AS REO'D
(4) 3/4" A307 BOLTS
___
i16(f1/2D_I-1'
Cy EACH CONNECTION
TYP.,3/16 1
3/16 /TYP.
3/16 T & B
TYP.
3/16 T & B
STIFFENER J
PLATE NS
& FS ---///
AS
REO'D
Max. Purlin Reaction
Load Combos:
D+0.75 Lr
D+0.755 =
0.6D+0.6*W=
=
D+0.75(Lr or 5)+ 0.45*W=
0.6D+0.7E _
PRYING ACTION
Purlin Beam - W32x26
Tension force T= 5.10 kips
Fu= 65 kips bf= 6.49 in.
g = 3.36 in. tf = 0.38 in.
tw = 0.23 in. D = 12.2 in.
b (Web to centerline of bolt)= g/2-tw/2 1.565 in.
b'(moment arm) = b- db/2 .1.19 in.
P (Effective flange width) 3.13 in.
i1= 1.67
tmin 0.34 inch < tf
' OK+
No Stiffener Plates REQ'D for Prying
LiKPI KIWI
6.91 0.00
2.34 0.00
13.60 0.40
10.33 0.53
1.42 0.08
Header Beam - W14x34
LiKPI KIWI
6.91 0.00
2.34 0.00
13.60 0.40
10.33 0.53
1.42 0.08
Header Beam - W14x34
Tension force T= 5.10 kips
Fu= 65 kips bf=
6.75 in.
g = 3.5 in. tf =
0.455 in.
tw = 0.285i in. D =
14 in.
b (Web to centerline of bolt)= g/2-tw/2
1.6075 in.
b'(moment arm) = b- db/2
1.2325 in.
P (Effective flange width)
3.215 in.
O =
1.67
tmin
0.34 in < tf
No Stiffener; Plates REQ'D for Prying
Stiff PL Still Req•d at Each Purlin For Bracing
Page 18
Ponding Check: (AISC 14th)
2.1 Simplified Design for Ponding
Lp=
12 ft
Ls=
33 ft
S=
9.67 ft
Ip=
340 in^4
Is=
204 in^4
Id=
0.218 in^4 <
Cs= 0.18
Cp= 0.01
Cp+0.9Cs=
0.17 <_
Primary - W14x34
Secondary- W12x26
Decking - Metal Works, LLC Deck
Ix Pos = 0.8835 in^4 °': OK
Ix Neg = 0.4947 in^4
n
Page 19
Column Top Plate
Loads From Header
Vertical D 4.97 k
Wup -25.40 k
Ev 0.06 k
I
Lateral W 6.04 k
E 0.30 k
i
Column Tributary- 594sgft
Top Plate Properties
Fy = 50 ksi
Uplift @ Top of Col .= 12.26 k
Plate Thickness = 0.75 in
Shear @ Top of Col= 3.63 k
Plate Width = 12.00 in
FS= 1.5
Plate Length = 19.00 in
Column = HSS12x12x1/4
Cap Weld Design
Column Typ = HSS
Column Width = 12.00 in
Lweld = 48 in
Weld Strength Required = 19.17 k
Cap Plate to Column Weld - Use
0.40 k m
48 in
i
min. 1/8" for weld per J2.4 AISC
2 /16" Fillet Weld Two Sides G.F. =
2 /16" PJP Groove Weld Two Sides G.F. =
min.1/8" for weld per J2.3 AISC
Cap Plate Bolts (Tension Due to Uplift)
No. Bolts = �4
T/bolt= 18.38 k 4.60 kips/bolt
4 bolts
V/bolt= 5.44 k 1.36 kips/bolt
4 bolts
0.75 in Dia A307 G.F. (Tension)= 9.94 kips
G.F. (Shear)= ' 5.97 kips
Combined UC= ' 0.27 <1
Use: (4) 3/4" 0 A307
1.86 k/in 01C
2.63 k/in (OIC
Page 20
Column - HSS12x12x1/4
Material: A500 Gr. C Fy= 50 ksi
Reactions from Worst Case Header Beam
vertical D 4.97 kips
Lr 6.87 kips
S 0.00 kips
Wdn 27.71 kips
Reduced Roof Live Load
Ev 0.07 kips
Wind Lateral
Wi, 6.04 kips applied at top of the column
Seismic Lateral
Ei, 0.27 kips applied at top of the column
Total effective column height
16.18 ft
# Columns in line Lateral Trib per Column
Max Column Tributary Length -
33.00 ft 2 16.500 ft/col Controls
Max Column Tributary Width -
18 ft 4 4.500 ft/col
Column Vertical Tributary-
594 sgft
Hole cut out in column:
Column Properties:
Cutout Properties:
D= 12 in
D= 5 in
t= 0.233 in
t= 0.233 in
A= 10.8 inA2
A= 1.165 inA2
1= 248 inA4
1= 41.95 inA4
Z= 47.6
Column Properties with Cutout:
A= 9.64 inA2
Max Allowable Stress Ratio = 0.85
1= 206.05 inA4
S= 34.34 inA3
An Increase of 1.2 is allowed for members designed
R= 4.62 in
using overstrength as per ASCE 7-10 12.4.3.3
Z= 40.61 inA3
Max Allowable Stress Ratio = 1.02
Seismic Load,Combinations with overstrength are required as per AISC 341-10
ASCE 7-10 CH. 12.4.3.2 SPECIAL SEISMIC LOAD COMBINATIONS (ASD)
5a. (1.0 + 0.14Sds)D + 0.7DQe
f!= 1.25
6. (1.0 + 0.105Sds)D + 0.525DQe + 0.755 Sds= 0.061
8. (0.6 - 0.14Sds)D + 0.7f2Qe
D
S Ehoriz.
5a. 5.66 kips
0 kips 0.24 kips
6. 5.65 kips
0 kips 0.18 kips
8. 3.32 kips
0 kips 0.24 kips
ASCE 7-10 12.2.5.2 Axial Strength Requirement
Prc = 5.66 kips < 0.15*Pc =
26.55 kips OK Mud
J
Page 21
Project Title: 7-Eleven #38944
Engineer: I
Project ID: 20-1326RO
Project Descr:i36x119 Canopy
DESCRIPTION: Column
Code References
Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used: ASCE 7-10
General Information
Steel Section Name:
HSS12x12x1/4
Overall Column Height 16.180 ft
Analysis Method:
Allowable Strength
Top & Bottom Fixity Top Free, Bottom Fixed
Steel Stress Grade
Brace condition for deflection (buckling) along columns
Fy : Steel Yield
50.0 ksi
X-X (width) axis: '
E : Elastic Bending Modulus
29,000.0 ksi
Unbraced Length for buckling ABOUT Y-Y Axis=16.180 ft, K = 2.1
Y-Y (depth) axis : I
Unbraced Length for buckling ABOUT X-X Axis=16.180 ft, K = 2.1
Applied Loads
Service loads entered. Load Factors will be applied for calculations.
Column self weight included: 637.54 Ibs " Dead Load Factor
AXIAL LOADS ...
Axial Load at 16.180 ft, Xecc =1.0 in, Yecc =1.0 in, D = 4.970, LR = 6.870, W = 27.710, E = 0.0tU k
BENDING LOADS ...
Lat. Point Load at 16.180 ft creating Mx-x, W = 6.040, E= 0.270 k
DESIGN SUMMARY
Bending & Shear Check Results
PASS Max. Axial+Bending Stress Ratio =
0.7798 : 1
Maximum Load Reactions..
Load Combination
+D+0.60W
Top along X-X
0.0 k
Location of max.above base
0.0 ft
Bottom along X-X
0.0 k
At maximum location values are ...
Top along Y-Y
0.0 k
Pa: Axial
22.234 k
Bottom along Y-Y
6.040 k
Pn / Omega: Allowable
177.275 k
Ma-x : Applied
-60.436 k-ft
Maximum Load Deflections ...
Mn-x/ Omega: Allowable
86.793 k-ft
Along Y-Y 2.111 in
at 16.180ft above base
for load combination: W Only
Ma-y:Applied
-1.80 k-ft
Mn-y / Omega: Allowable
86.793 k-ft
Along X-X 0.07214 in
at 16.180 ft above base
for load combination : W Only
PASS Maximum Shear Stress Ratio =
0.03831 :1
Load Combination
+D+0.60W
Location of max.above base
0.0 ft
At maximum location values are.. .
Va : Applied
3.624 k
Vn / Omega: Allowable
94.604 k
Load Combination Results
Maximum Axial + Bending
Stress Ratios
Maximum Shear Ratios
Load Combination Stress Ratio
Status
Location Cbx
Cby KxLx/Rx KyLy/Ry
Stress Ratio Status Location
D Only 0.025
PASS
0.00 ft 1.64
1.00 85.12 85.12
0.000 PASS
0.00 ft
+D+Lr 0.058
PASS
0.00 ft 1.64
1.00 85.12 85.12
0.000 PASS
0.00 ft
+D+0.750Lr 0.050
PASS
0.00 ft 1.64
1.00 85.12 85.12
0.000 PASS
0.00 ft
+D+0.60W 0.780
PASS
0.00 ft 1.64
1.00 85.12 85.12
0.038 PASS
0.00 ft
+D+0.910E 0.071
PASS
0.00 It 1.64
1.00 85.12 85.12
0.003 ,PASS
0.00 ft
+D+0.750Lr+0.45OW 0.616
PASS
0.00 ft 1.64
1.00 85.12 85.12
0.029 PASS
0.00 ft
+D+0.450W 0.591
PASS
0.00 ft 1.64
1.00 85.12 85.12
0.029 PASS
0.00 ft
+D+0.6825E 0.060
PASS
0.00 ft 1.64
1.00 85.12 85.12
0.002 PASS
0.00 ft
+0.60D+0.60W 0.770
PASS
0.00 ft 1.64
1.00 85.12 85.12
0.038 PASS
0.00 ft
+0.60D+0.910E 0.061
PASS
0.00 ft 1.64
1.00 85.12 85.12
0.003 PASS
0.00 ft
Maximum Reactions
Note: Only non -zero reactions are
listed.
Axial Reaction
X-X Axis Reaction k
Y-Y Axis Reaction Mx - End Moments k•ft My - End Moments
Load Combination @
Base
@ Base @ Top
@ Base @ Top @ Base
@ Top @ Base
@ Top
D Only
5.608
-0.414
-0.414
+D+Lr
12.478
-0.987
-0.987
+D+0.750Lr
10.760
-0.844
-0.844
Page 22
DESCRIPTION: Column
Maximum Reactions
Load Combination
Axial Reaction
@ Base
+D+0.60W
22.234
+D+0.70E
5.657
+D+0.750Lr+0.45OW
23.230
+D+0.450W
18.077
+D+0.5250E
5.644
+0.60D+0.60W
19.991
+0.60D+0.70E
3,414
Lr Only
6.870
W Only
27.710
E Only
0.070
Extreme Reactions
Project Title: 7-Eleven #38944
Engineer:
Project ID: 20-1326RO
Project Descr:36x119 Canopy
Note: Only non -zero reactions are listed.
X-X Axis Reaction k Y-Y Axis Reaction Mx - End Moments k-ft My - End Moments
@ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top
0.189
-3.476
-0.418
2.718
-45.860
-1.883
2.718
-45.431
-1.453
0.142
-2.711
-0.417
3.624
-60.270
-1.634
0.189
-3.311
-0.253
-0.573
-0.573
6.040
-100.036
-2.309
0.270
4.374
-0.006
Axial Reaction
X-X Axis Reaction
k Y-Y Axis Reaction
Mx - End Moments k-ft
My - End Moments
Item
Extreme Value
@ Base
@ Base @ Top
@ Base @ Top
@ Base @ Top
@ Base @ Top
Axial @ Base
Maximum
27.710
6.040
-100.036
-2.309
"
Minimum
0.070
0.270
-4.374
-0.006
Reaction, X-XAxis Base
Maximum
5.608
-0.414
-0.414
"
Minimum
5.608
-0.414
-0.414
Reaction, Y-Y Axis Base
Maximum
27.710
6.040
-100.036
-2.309
"
Minimum
5.608
-0.414
-0.414
Reaction, X-XAxis Top
Maximum
5.608
-0.414
-0.414
"
Minimum
5.608
-0.414
-0.414
Reaction, Y-Y Axis Top
Maximum
5.608
-0.414
-0.414
"
Minimum
5.608
-0.414
-0.414
Moment, X-XAxis Base
Maximum
5.608
-0.414
-0.414
-0.414
"
Minimum
27.710
-100.036
6.040
-100.036
-2.309
Moment, Y-Y Axis Base
Maximum
0.070
0.270
-0.414
-0.006
"
Minimum
27.710
6.040
-0.414
-2.309
Moment, X-XAxis Top
Maximum
5.608
-0.414
-0.414
"
Minimum
5.608
-0.414
-0.414
Moment, Y-Y Axis Top
Maximum
5.608
-0.414
-0.414
"
Minimum
5.608
-0.414
-0.414
Page 23
Base Plate Design and Anchor Bolts Check
Loads for Base Plate Design
Reactions Base on Column
22"
16"
41
22"
3
Column = HSS12x12x1/4
M
D
5.61
kips
Lr
6.87
kips
S
0.00
kips
W„p
-25.40
kips
Wdn
27.71
kips
E
0.07
kips
Wh
6.04
kips Wind load lateral
Eh
0.27
kips Seismic Lateral
Wm
97.83
k-ft
Em
4.42
k-ft
Base Weld Design
Loads
Column Typ = HSS
Pu=
-11.9 kips
Column Width = 12 in
V=
3.63 kips
L weld = 48 in
M=
58.70 k-ft
S weld = 192.0 inA2
Safety Factor =
1.5
Tension Weld Strength Required = 17.81 k
+
1057 k-in
= 5.87 k in
48 in
192.0 inA2
Shear Weld Strength Required = 5.44 k
=
0.11
k in
48 in
Combined Weld Strength Required =
5.87
k in
'
min. 1/8" for weld per J2.4 AISC
Base Plate to Column Weld - Use:
7 /16"
Fillet Weld All Around
G.F. =
6.50
k/inOl<
Anchor Bolts Capacities
For F1554 Gr 55 Anchors , Futa
75.00
ksi
Number of Anchor Rods in Tension
2
Number of Anchor Rods in Shear
4
Size of Anchor bolt
d
1 1/4
in hef= 25.75 in
Area of Anchor Bolt Area
A5e
0.97
sgin
Steel Strength of Anchor in Tension ACI D.5.1
ON. =
m *Ase*Futa
m = 0.75
(DN�
54.51
k/bolt `
Steel Strength of Anchor in Shear ACI D.6.1
mVs =
(D*.60 *Ase*Futa m = 0.65
mVs =
28.35
k/bolt
Page 24
Project Title: 7-Eleven #38944
Engineer:
Project ID: 20-1326RO
Project Descr:36xl 19 Canopy
DESCRIPTION: Base Plate and Anchor Bolt
Code References
Calculations per AISC Design Guide # 1, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set: ASCE 7-10
General Information
Material Properties
AISC Design Method Load Resistance Factor Design (D c : LRFD Resistance Factor 0.60
Steel Plate Fy = 50.0 ksi
Concrete Support fc = 3.0 ksi
Assumed Bearing Area: Bearing Area = P / Fp Nominal Bearing Fp per J8 2.550 ksi
Column & Plate
Column Properties
Steel Section : HSS12xl2xl/4
Depth 12 in Area 10.8 in^2
Width 12 in Ixx in14
Flange Thickness 0.233 in lyy in^4
Web Thickness in
Plate Dimensions Support Dimensions
N : Length 22.0 in Width along "X" 22.0 in
B : Width 22.0 in Length along "Z' 22.0 in
Thickness 1.250 in
Column assumed welded to base plate.
Applied Loads
................_._..._..._............................._...._..............................................
P-Y
V-Z M-X ........................
D : Dead Load .......
5.610 k
k k-ft
L : Live .......
k
k k-ft
Lr : Roof Live .........
6.870 k
k k-ft
S : Snow ................
k
k k-ft
W: Wind ................
27.710 k
6.040 k 97.830 k-ft
E: Earthquake ..............
0.070 k
0.270 k 4.420 k-ft
H : Lateral Earth .........
k
k k-ft
" P ' = Gravity load, '+"
sign is downward.
"+" Moments create higher soil pressure at +Z edge.
"+" Shears push plate towards +Z edge.
1'-10"
Z
Anchor Bolts
Anchor Bolt or Rod Description 1.25 •_ '—^+— —
Max of Tension or Pullout Capacity........... 54.510 k •
Shear Capacity ......................................... 28.350 k
Edge distance: bolt to plate ................... 3.0 in
Number of Bolts in each Row ................... 2.0
Number of Bolt Rows ........................ 1.0 • • •
x
Page 25
Project Title: 7-Eleven #38944
Engineer:
Project ID: 20-1326R0
Project Descr:36x119 Canopy
DESCRIPTION: Base Plate and Anchor Bolt
GOVERNING DESIGN LOAD CASE SUMMARY
_- _............................................_
Mu : Max. Moment:
_._....._._.............................. ....._.._................. _.............
..._...........
14.001 k-in
Plate Design Summary
fb : Max. Bending Stress ...............
35.843 ksi
Design Method Load Resistance Factor Design
Fb : Allowable:
45.000 ksi
Governing Load Combination +1.20D+1.60Lr+0.50W
Fy' Phi
Governing Load Case Type Axial + Moment, LI2 < Eccentricity, Tension on
Bending Stress Ratio
0.797
Governing STRESS RATIO 1.0
Bending Stress OK
Design Plate Size V-10" x V-10" x 1 -114"
fu : Max. Plate Bearing Stress ....
1.530 ksi
Pu : Axial ......... 32.759 k
Fp : Allowable:
1.530 ksi
Mu: Moment........ 97.830 k-ft
Bearing Stress Ratio 1.000
Bearing Stress OK
Tension in each Bolt ................... 24.977
Allowable Bolt Tension ............... 54.510
Tension Stress Ratio 0.458
Tension Stress OK
Page 26
Foundation Footing Designs
Loads for FDN Design
Vertical
Wind load lateral
Seismic Lateral
D
5.61
kips
Lr
6.87
kips
S
0.00
kips
W p
-25.40
kips
Wdn
27.71
kips
E
0.07
kips
Wi,
6.04
kips
Ei,
0.27
kips
Wm
97.83
kip-ft
Em
4.42
kip-ft
Geotechnical Report Data
Geotechnical Company: Ardaman & Associates, Inc.
Project/Report No: 19-1651
Date: 6/3/2019
Preferred Footing
Spread Footing
Allowable Bearing pressure=
2500
psf
Allowable lateral. pressure =
150
psf/ft
Coeffiecient of Friction =
0.25
Soil Density=
110
pcf
Concrete Density=
145
pcf
Footing Width
7.00
ft
Footing Depth
2.50
ft
Depth of Soil Above
3.00
ft
Total Depth of Footing
5.50
ft
Check Uplift
Wind Uplift=
-25.40
kips
Soil Weight=
13.48
kips
Weight of FDN =
17.76
kips
Dead Load at FDN =
36.85
kips
Overturning and Bearing Checked in Enercalc
Page 27
Project Title: 7-Eleven #38944
Engineer:
Project ID: PO-1326RO
Project Descr:36x119 Canopy
DESCRIPTION: Spread Footing
Code References
Calculations per ACI 31.8-14, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used: ASCE 7-10
General Information
Material Properties
Soil Design Values
fc : Concrete 28 day strength =
3.0 ksi
Allowable Soil Bearing =
2.50 ksf
fy : Rebar Yield =
60.0 ksi
Increase Bearing By Footing Weight =
No
Ec : Concrete Elastic Modulus =
3,122.0 ksi
Soil Passive Resistance (for Sliding) =
150.0 pcf
Concrete Density =
145.0 pcf
Soil/Concrete friction Coeff. -
0.250
cp Values Flexure =
0.90
Shear =
0.750
Increases based on footing Depth
Analysis Settings
Footing base depth below soil surface =
5.50 ft
Min Steel %Bending Reinf.
=
Allow press. increase per foot of depth =
ksf
Min Allow % Temp Reinf.
= 0.00090
when footing base is below =
ft
Min. Overturning Safety Factor
= 1.0 :1
1
Min. Sliding Safety Factor
= 1.0 :1
Increases based on footing plan dimension
Add Ftg Wt for Soil Pressure
Yes
Allowable pressure' increase per foot of depth
Use fig wt for stability, moments & shears
Yes
=
ksf
Add Pedestal Wt for Soil Pressure
No
when max. length or width is greater than
=
ft
Use Pedestal wt for stability, mom & shear
No
Dimensions
Width parallel to X-X Axis = 7.0 ft
Length parallel to Z-Z Axis = 7.0 ft
Footing Thickness = 30.0 in
Pedestal dimensions...
px : parallel to X-X Axis =
pz : parallel to Z-Z Axis =
Height =
Rebar Centerline to Edge of Concrete...
at Bottom of footing =
Reinforcing
Bars parallel to X-X Axis
Number of Bars =
Reinforcing Bar Size =
Bars parallel to Z-Z Axis
Number of Bars =
Reinforcing Bar Size =
Bandwidth Distribution Check (ACI 15.4.4.2)
Direction Requiring Closer Separation
# Bars required within zone
# Bars required on each side of zone
kwlied Loads
8.0
# 5
8.0
# 5
n/a
n/a
n/a
D Lr
P : Column Load = 5.610 6.870
OB : Overburden =
............ ................:._.............................. _...........:...................
M-xx =
M-zz =
................ ............ ...... ... ............................
.....
V-x =
V-z =
Page 28
Project Title: 7-Eleven #38944
Engineer:
Project ID: 20-1326RO
Project Descr:36x119 Canopy
DESCRIPTION: Spread Footing
DESIGN SUMMARY MNNKr -
Min. Ratio Item Applied Capacity Governing Load Combination
PASS
0.9280
Soil Bearing
2.320 ksf
2.50 ksf
+D+0.60W about Z-Z axis
PASS
n/a
Overtuming -X-X
0.0 k-ft
0.0 k-ft
No Overturning
PASS
2.084
Overturning - Z-Z
67.758 k-ft
141.230 k-ft
+0.60D+0.60W
PASS
5.862
Sliding -X-X
3.624 k
21.244 k
+0.60D+0.60W
PASS
n/a
Sliding - Z-Z
.0.0 k
0.0 k
No Sliding
PASS
n/a
Uplift
0.0 k
0.0 k
No Uplift
PASS
0.3046
Z Flexure (+X)
12.943 k-ft/ft
42.492 k-ft/ft
+1.20D+0.50Lr+W
PASS
0.08346
Z Flexure (-X)
3.547 k-ft/ft
42.492 k-ft/ft
+1.20D+W
PASS
0.1114
X Flexure (+Z)
4.735 k-ft/ft
42.492 k-ft/ft
+1.20D+0.50Lr+W
PASS
0.1114
X Flexure (-Z)
4.735 k-ft/ft
42.492 k-ft/ft
+1.20D+0.50Lr+W
PASS
0.1164
1-way Shear (+X)
9.567 psi
82.158 psi
+0.90D+W
PASS
0.03863
1-way Shear (-X)
3.174 psi
82.158 psi
+1.20D+W
PASS
0.03659
1-way Shear (+Z)
3.006 psi
82.158 psi
+1.20D+0.50Lr+W
PASS
0.03659
1-way Shear (-Z)
3.006 psi
82.158 psi
+1.20D+0.50Lr+W
PASS
0.07124
2-way Punching
11.706 psi
164.317 psi
+1.20D+0.50Lr+W
Page 29
• I
MC0Anchor Bolt Design for Spread Footing
SALES AND
MANUFACTURING
3113 Saint Louis Ave.
Fort Worth, TX 76110
Anchor Bolt (ASTM F1554, Gr. 55), Xa = 1.0 for cast -in-place anchors in normal weight concrete (ACI 318 Section 8.6 and D3.6)
ANCHOR ROD GROUP CHECK (Per ACI318-14 Chapt. 17 Anchoring to Concrete)
Tensile Force on Anchors (Nu) = Nu
49.95 kips
Shear force on Anchors (Vu) = Vu
6.04 kips
Seismic Design Category =
A
Number of Anchors (n) n
4
Number of Anchors in Tension (n) =
2
Anchor Diameter (da) = da
1.25 inch
Anchor Area (Ase) =
0.97 Sq. inch.
Embed Washer with Nut =
No
Anchor Spacing perpendicular to load (S1)=
16 inch
Anchor Spacing Parallel to load (S2)=
16 inch
Spacing of Outer Anchors (So) =
16 inch
Embedment Depth of Anchor on Concrete (hEr)
25.75 inch
Yield Strength of Anchors (Fy) =
55 ksi
Tensile Strength of Anchors (Futa)
75 ksi
Edge distance in Load Direction (Cal)
34 inch
Edge distance perpendicular to Load (Ca2)
34 inch
Concrete strength (f'c) =
3000 psi
Axial Eccentricity (e'N)=
0 inch
Shear Eccentricity (e'v)=
0 inch
Footing Width =
7.00 ft
Page 30
0
I. Steel Strength of Anchors in Tension (Eq. 17.4.1)
Nsa =n*Ase*futa =< 1.9*Fy or 125 ksi N.
futa = < 1.9 Fy or 125 ksi = 104.50 ksi s
futa = Min(1.9 Fy,Futa,125) 75.00 ksi
Thus Nsa = n*Ase*futa 145.37 kips
m = 0.75 m Nsa = 109.03 kips OK'
II. Concrete Breakout Strength of Anchors in Tension (17.4.2) mNcbg 0= 75
N{ N
♦
1 1
L_ o
C—C-16 8reakaae
ANC = projected Concrete failure area of a single anchor or group of anchors, for calculation of strength intension
ANc
5712.00 sq. inch
ANco = projected Concrete failure area of a single anchor, for calculation of strength in tension if not limited by edge
distance or spacing. ANco= 9*hEF^2 =
4624.00 sq. inch V
Yec,N= Factor used to modify tensile strength of anchors based on eccentricity of applied loads
Yec,N = 1/(1+2e'N/3*hEF)=<1.0
1.000
Ca(min) < 1.5hEF 1.5hEF
38.625 in
Adjusted hEF hEF
22.667 in
Yed,N= Factored used to modify tensile strength of anchors
based on proximity to edges of concrete members
yed,N = 0.7 +(0.3* Ca;min/1.5 hEF) Yed,N
1.000
Yc,N
1.00
Ycp,N
1.00
Kc
24
Nb
142 kips
Then Ncbg=ANJANw* Yec,NYed,Nyc,Nycp,N•Nb
mNcbg
175.24 kips For a group anchors
131.43 kips OIC N
Page 31
7
III. Pullout strength of Anchors in Tension (17.4.3) (I)Np. = in group
Bearing Area of Hevy Hex. Anchor Bol ABRG 2.24 sq. inch
t
Np = 8* ABRG*f'c Np 53.69 kips
Cracking at Service Loads? Yes Ye,p 1
Number of tensile Anchors n 2
NPN = n*Yc,P*Np NPN = 107 kips
= 0.7 CDNPN(g-up) 75_16 kips CiK purrnrt7
IV. Side -face Blowout of Anchors in Tension (17.4.4) mNsbg = m = 0.75
hEF>2.5Cal 2.5Cal= 85
51<6Ca1 6Ca1= 204W?2 R
So that Side -Face Blowout will not Control
Ca2<3Ca1 Yes R=(1+Ca2/Cal)/4 0.50
N56=160*Ca1.Xa *(ABRG)Aos * f cAs* R ��
Thus Nsb = 222.82 222.82 kips
Therefore Nsbg = (1+sB/6cal)*Nsb 240.30 kips a°
so = distance between outer anchors along the edge Sure -face 6luwnat
Thus mNsbg = 180.23 kips i1K
V. Steel Strength of Anchor in Shear (Eq.17.5.1.5 mVsa = m = 0.65 Y.
For cast -in headed bolts where sleeves do not extended through the shear plane - r'
Built-up grout,pads used? ;.Yes
V,=0.6 * n*Ase* Fut 87.22 kips C3 A0
ry
Thus (DVsa 56 69 kips > 6.04 kips 3K
VI. Concrete Break out Strength of Anchors in Shear (17.5.2)
Vcbg=(Avc/Aveo)*Ye,vYed,vY,,vYh,v.Vb Eg17.5.2.1b) SreelfuiNreprecee<W
by concrete srstill
For shear force perpendicular to the edge on a group of anchors
Avc = Projected concrete Failure Area group of anchors for calculation of strength of shear
Avc .(Ca2+s+Ca2)*(1.5Cal) Ave 4284.00 Sq. inch
A_ = Projected concrete failure area of a single anchor for calculation of strength in shear.
i
if not limited by corner influences, spacing, or member thickness
Avco= 4.5*(Cal)A2 Avco 5202.00 Sq. inch c.o
'u
Avc=<n*kco pK
Yec,v = Modification factor for Anchor group loaded eccentrically in shear _,._ _ _� I �.___...... y..°
S�eetjoFluiayrce 11,d Cone
Y - 1/(1+2e'v/3ca1)<=1.0 Y = 1.00 eR. °F, o•°��
ec,v— ec,v bYe F i f
j atroe eggs
Ca2 >= 1.5*Cal ? No
Since cat = cal = 16 inch.
c�
Yed,v=modification factor edge effects for anchors loaded in shear a a . --
Y.
0.
Yed,v= 0.7+0.3*(ea2/1.5ea1) Yed,v= 0.90 ��e c,
Cracking and Service loads? Yes
- I '
YC,v = modification factor for concrete condition at service load ever pedestal
ties resist cracking and act as supplemental reinforcement
Yc,v = 1:20
Yh,v = Modification factor for member thickness in relation to anchor embedment depth
ha > hEF 'Vh,v - 1.00
Vb = the basic concrete break out strength in shear of single anchor in cracked concrete
Vb1= [7(le/da)A0.2* (daA0.5))*Xa*f'cA0.5*(cal)A Eq. 17.5.2.2a)
Page 32
le = loaded bearing length of the anchor for shear
le = hEF le<= 8*da
le
Vb(a) = 7*(le/da)AO.2*(da)A0.5*(f'c)A0.5*(ca1)A1.5
Vb(a)
Vb(b) = 9*xa*(f'cA0.5)*(calA1.5)
Vb(b)
Thus Vb = Min(Vbl, Vb2)
Vb
C_
Thus mVcbg= (Avc/Avco)* Yeo,VYed,VYc,VYh,v.Vb
r,
VII. Concrete pryout strength of Anchor in Shear (17.5.3)
Vcpg = Kcp*Ncpg Eq. 17.5.3.1b
When hEF
Thus
Kcp
Ncpg = basic concrete pryout strength of a group of a anchors
Recallin
Ncpg
Vcpg
m=
Thus
OVcpi
VIII Anchor Rods Group Capacity
Allow. Tension
mNn
Allow. Shear
mVn
IX Check Shear / Tension Interaction
If Nua/DNn <= 0.2
Therefor full shear design strength is not permitted
If Vua/mVn < = 0.2
Full Tension design is permitted
Nua/(I)Nn + Vua/(I)Vn =
0
10 inch
128.81 kips
97.73 kips
97.73 kips
0.7
60_84 kips > 6.04 kips OK
(
v,
~l n�
25.75 inch. oa
� u
Concrrleprpaut
2 ! �s
175.24 kips
350.47 kips
0.7
245.33 kips>
6.04kips!OK
75.16 kips >
49.95 kips .OK€
54.00 kips >
6.04 kips„OK �
0.66 No
0.11 Yes
0.78 < 1.2 OK
r
I
Page 33