Loading...
HomeMy WebLinkAboutStructural CalculationsJob Title: 7-Eleven #38944 C . Indrio Rd & Kings Highway Fort Pierce, FL Job No. 20-1326110 S A. L E S A N D Calc'd By P.,Brennan, PE Date 20-Feb-2020 MANUFACTURING .. KERTIFIED FABRICATOR STRUCTURAL CALCULATIONS FOR 7-Eleven, Inc. - Cypress Waters K T • BRf'''% QQ.:.••��C E NSF..y o,�F• �'c • OR10 ''1SS�4NAL ''���l/lllllll� Page 1 CODES: 2017 Florida Building Code, ASCE 7-10, AISC-15th. Edition & ACI 318-14 The Canopy is classified as a Cantilever Column System detailed to conform to the requirements of Steel Ordinary Cantilever Column System (ASCE 7-10 Table 12.2-1) and has been designedl using Equivalent Lateral Force Procedure (ASCE 12.8) Load Transfer System in Canopy Loads are transferred from the Fascia System to the interlocking Deck Pans. The Deck Pans transfer the load through the Deck Clips to Wide Flange Purlins. The purlins transmit the load to the Header beam. the header beams carry the load to the Cantilever Columns. Finally the columns transmit the loads to foundation through baseplate and anchor bolts. Canopy Specifications Length 119.00 ft Total Height of Canopy 17.50 Width 36.00 ft Number of Column Rows 2 Fascia Height 3.00 ft Number of Columns/ Row 4 Mansard Roof Height 0.00 ft Mansard Pitch 0 :12 Total Number of Columns 8 Canopy Clear Height 14.50 ft Canopy Dead Load Calculations: Purlin Beam - W12x26 Weight 26 1 plf Header Beam - W14x34 Weight 34 ; plf Column - HSS12x12x1/4 Weight 39.431 plf Deck weight 5.00 psf Colateral weight 0.00 psf Total weight 5.00 psf Length of Canopy L 119.00 ft Width of Canopy B 36.00 ft Area of Canopy A 4284.00. ,., sgft Purlin Beam - 119.00 ft No 4 Wt. 12376 lb Header Beam - 36.00 ft No 4 Wt. 4896 lb Column - Height 16.18 ft No 8 Wt. 5104.87 lb Thus Total Dead load DL 10.22 psf �41111;17;, " I Vr Page 2 Roof Live Load Arrangement ASCE Table 4-1 Foot note "n" since the roof live load for the purlin are not reduced below 20 psf Applying loads to adjacent spans or alternation span is not required Lr= 20 psf At= 594 sgft F= 0.00 R1= 0.61 R2= 1 Reduced Live load (Lr) = 12.1 psf for columns and footings Snow Load Ground Snow Load Pg 0.00 psf Thermal Factor Ct 1.20 Unheated and Open Air Structure (ASCE Table 7-3) Important Factor IS 1.00 Risk Category. II - (ASCE Table 1.5-1 & Table 1.5-2) Exposure Factor Ce 1.00 Terrain Category C - (ASCE Table 7-2) Flat Roof Snow Load Pf _ 0.00 psf Rain on Snow Surcharge 0.00 psf Balanced Snow Load 0.00 psf J Page 3 r SEISMIC DESIGN SITE PARAMETER Site Class D i The maximum Considered (Mapped) Spectral Acceleration (ASCE sec. 11.4.1) at short periods SS = 0.057 at 1 sec period S1= 0.030 Site Coefficient for short period (Ss) (ASCE Table11.4.1) Fa = 1.600 for 1 sec period (Sl) (ASCE Table11.4.2) F,, 2.400 Design Spectral Responses Acceleration for short period (Eq. 11.4-1) SMS= Fax S5= 0.091 for 1 sec. period (Eq. 11.4-2) SM1= Fvx S1= 0.072 The design spectral response acceleration (Sec) for short period (Eq. 11.4-3) SDS= 2/3 x SMS= 0.061 for 1 sec. period (Eq. 11.4-4) SD1= 2/3 x SM1= 0.048 ,Seismic Design Category Occupancy Risk Category (Table 1.5-1) II Seismic Design Category based on 1 sec period responses acceleration (ASCE 11.6) SDC A Seismic Response Coefficient the response modification factor (ASCE,Table 12.2-1) Steel Ordinary Cantilever Column. System R= 1.25 The occupancy importance factor (ASCE Table 1.5-2) 1= 1.00 CS SDS/(R/1) = 0.05 Total Canopy Dead Load DL = 10.22 psf Area of Canopy 4284 sqft Seismic Weight W = DL * A = 43.8 kips Seismic Force (Eq.) V = CSW 2.13 kips from previous page 2 from previous page 2 Page 4 Wind Design ASCE 7-10 Wind Forces (Chapter 27 Directional Procedure) Open Building with Monoslope Roof (Section 27.4.3) with fascia panels as parapets (Section 27.4.5) Basic Wind Speed V = 160 mph Vasd = 124 mph Exposure (Section 26.7) C Risk Category II Gust effect factor (section 26.9) the canopy's fundamental natural frequency is greater that 1Hz, and is therefore rigid as defined in section 26.2, therefore as per section 26.9.1 G = 0.85 as per table (26.6-1) Directional factor Kd 0.85 Wind Velocity pressure section 27.3.2 (Eq. 27.3-1) qZ = .00256 .K=. K:t. Kd. V` For Open Building 3- sec guest -speed power law exponent from (table 6-2) a = 9.50 Nominal height of the atmospheric boundary layer used (Table 6-2) Zg = 900.00 ft Fascia Height + mansard height = 3.00 ft Canopy clear height (H) = 14.50 ft h 16.00 ft KZ= Velocity pressure coefficient= Kh= 2.01(h/zg)A2/a 0.86 K:t =Topographic Factor K:t 1.00 Thus q= = velocity pressure q= = 47.93 psf Wind design Load for Fascia (Parapet) parapet height h = Clear height + fascia height = h 17.50 ft Kp= Velocity pressure coefficient = Kp= 2.01(h/zg)A2/a 0.88 Thus qp=.00256.Kp.KZt.Kd. V` qp= 48.85 psf MWFRS Horizontal Forces (Section 27.4.5) parapet wind pressure Pp = gpGCpn Section 27.4.5 Windward GCpn = 1.50 Leeward GCpn = -1.00 Wind ward pp = 73.27 psf Leeward pp = -48.85 psf Wind Shear for maximum Tributary Area to the Column Pw = pp*A Maximum Tributary Area of Single Column C2, A = hx B fascia Height h 3.00 ft Tributary Width B 33.00 ft A 99.00 sq. ft Thus Pw 6.04 kips Wind Uplift/ Downward for Deck MWFRS for open Building Figure 27.4-4 When Flat Roof Clear Leeward or windward Flow control design (obstructions always <SO%) Worst case for uplift CN Downward wind CN q = gGCn uplift cidownward Uplift Force Puplift = (Uplift Area* Uplift pressure quplift) Puplift= Uplift Area= Max Tributary column Length * Max. Cantilever Width Max Tributary column Length = L B Puplift = -1.10 1.20 -44.82 psf 48.89 psf A* quplift 33.00 ft. 18.00 ft. 26.62 kips for single Column Page 5 Fascia Frame Check Clear Height: Fascia Height: Frame Spacing: Edge Distance: Gutter Width: 14.50 ft A= 8 in E= 10 in @ Sides 3.00 ft B= 12 in E= 16 in @ Ends 48 in o.c. 61= 10 in 3.50 ft C= 6 in 8 in D= 26 in L%z c> Single or Double Brace II, (NS only) (NS & FS) m 5 V 2 a m 2 3 D Y Z a � E E _ . U 4 Z GUTTER I1� EDGE DISTANCE Forces: (Due to the light weight of the fasica, wind shall control over Seismic.) Fascia weight (incl frames) = 4 psf pp = 73.27 psf Fascia Frame Design: C Section: 20ga x 13/4" x 15/8" C M/()= 0.886 k-in P/Q= 1.822 k Frames @ 4.00 ft O.C. Single or Double Brace? Single Brace Vertical Member XY: M = 0.273 k-in < 0.886 k-in i Brace XZ: Length = 28.7 in P = 0.196 k < 1.822 k Check Screws: Screw Capacity: #8 Tek = 174 lb Shear --------- ESR-2196 #12 Tek = 200 lb Shear (Lapped 20ga) #12 Tek = 315 lb Shear (20ga to 1/4") ESR-1976 #1/4 Tek = 430 lb Shear (Lapped 20ga) #1/4 Tek = 115 Ib Tension (Pullout) 20ga I Screw Trib. Area Fa Fc Page 6 0 Checking Roofing Deck System & Beam Clips Materials Specifications: Pan Deck by Metal Works; 3"x16" 20 Ga Metal Works Deck Clip =12 Ga Galy. Steel Clip NCA# 18-0918.09 Deck Capacity - 40ksi -20ga Width = 16.00 in Mapos = 7.93 k-in Maneg = -6.51 k-in Design Loads D 5.00 psf Lr or S 20.00 psf W-% 47.93 psf Roof Wind Design Pressures (psf) C&C Figure 30.8-1 Z3 Z2 Z1 73 -69 73 -69 1 49 -45 Check Deck at 9'-8" Span Span Length- 9.67 - ft For Gravity (Downward) Check Zone 3 Net Pressure Coefficient Figure 30.8-1 Cn 1.80 ASD Total Load = D+.75(Lr or S)+.75*0.6*W = Wtotaldown 53.00 psf Mu 7.31 k-in Mn/Q > Mu t3tmmi - - For Uplift Check Zone 3 Net Pressure Coefficient Figure 30.8-1 Cn -1.70 ASD total Load = 0.6D+0.6*W = WtotaioPue -38.56 psf Mu -5.32 k-in Mn/Q > Mu (� ��� ' #�,a'�:�°fie. Check Deck at 3'-6" Cantilever L 3'.50 ft Zone 3 Net Pressure Coefficient Figure 30.8-1 For Gravity (Downward) Check Cn 2.40 ASD Total Load = D+.75(Lr or S)+.75*0.6*W = Wtotal down 64.00 psf Moment Required = wu*Iz/2 = Mu -6.27 k-in Mn/Q > Mu I For Uplift Check Zone 3 Net Pressure Coefficient Figure 30.8-1 Cn -3.30 ASD total Load = 0.6D+0.6*W = Wtotal uplift -77.67 psf Moment Required = wu*Iz/2 = Mu 7.61 k-in Mn/Q>Mu + Beam/Deck Clip Capacity Checks: Deck clip yield capacity 941 lbs. Deck Allowable Capacity 0=1.67 563 lbs. Single or Double Clamped Double Seismic Load Calculations: Total Dead Load 5.00 psf Seismic Response Coefficient Cs 0.05 Horizontal Shear on Deck V = Cs*W 0.24 psf Deck Clip Spacing Ll 1.33 ft 16" o.c. Clip Trib L2 9.67 ft Assume lateral capacity of clip is 20% of clamp load. Seismic Load Transfer to Bolt = V*Ll*L2 = 2.19 lb < 225 IbCIK W Wind Transfer to Bolt = Pp*Hf*L1/#purlins 73.09 lb < 225 Ib tOK 'e"'' Uplift Check Wu = Wtotal * Ll*L2 495.74 lb < 1127 lb (� Gravity Load Wu = Wtotal * L1*1-2 681.44 lb < 1127 lb � c Page 7 Loads input for Enercalc Solutions: Purlin Beam Center Span (Trib = 9.667') All loads applied correspond to the largest tributary area and largest reaction; therefore the analysis is based on applying conservative loads to the beams, columns, and connection design. Purlin Beam = W12x26 Material: A992 Fy= 50 ksi Loads from Decking D 5.00 psf Lr 20.00 psf S 0.00 psf Wdn 48.89 psf Ev 0.09 psf Lateral Loads Wh Eh Maximum Tributary width for purlin 91.59 plf 3.62 plf 9.667 ft Purlin Load Combinations for Biaxial Bendine (ASD Stress Ratio Strong Axis Weak Axis D 0.116 Lr 0.302 S W 0.738 0.612 E 0.001 0.024 ASCE 7-10 Load Combinations (ASD 1. D 2. D+L 3. D+(Lr or S) 4. D + 0.75L + 0.75(Lr or S) `5a. D+0.6*W 5b. D+0.7E 6a. D + 0.75L +0.75(0.6W) + 0.75(Lr or S) 6b. D + 0.75L +0.75(0.7E) + 0.75(Lr or S) 7. 0.6D+0.6*W 8. 0.6D + 0.7E STRONG WEAK COMBINED 1. 0.116 0.000 0.12 2. 0.116 0.000 0.12 3. 0.418 0.000 0.42 4. 0.343 0.000 0.34 5a. 0.559 0.367 0.93 5b. 0.117 0.017 0.13 6a. 0.675 0.275 0.95 6b. 0.343 0.013 0.36 7. 0.512 0.367 0.88 8. 0.070 0.017 0.09 ASCE 7-10 CH. 12.4.3.2 SPECIAL SEISMIC LOAD COMBINATIONS (ASD) 5a. (1.0 + 0.14Sds) D + 0.70Qe O= ! 1.25 6. (1.0 + 0.105Sds)D + 0.525DQe + 0.75S Sds= 0.061 8. (0.6 - 0.14Sds) D + 0.70Qe Controls <=1.0 Ok STRONG WEAK COMBINED 5a. 0.118 0.021 0.14 Controls <=1.2 Ok 6. 0.117 0.016 0.13 8. 0.069 0.021 0.09 Page 8 Project Title: 7-Eleven #38944 Engineer: Project ID: 20-1326RO Project Descr:36x119 Canopy DESCRIPTION: Purlin Strong Axis (Single Span Trib = 9.667') CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy : Steel Yield : 50.0 ksi Beam Bracing : Beam bracing is defined Beam -by -Beam E: Modulus: 29,000.0 ksi Bending Axis : Major Axis Bending Unbraced Lengths Span # 1, Braced @ 1/4 Points D(0.04834) Lr(0.1933) W(0.4726) E(0.000870) W12x26 Span = 33.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Loads on all spans... Uniform Load on ALL spans : D = 0.0050, Lr = 0.020, W = 0.04889, E = .000090 ksf, Tributary Width = 9.667 ft DESIGN SUMMARY ® + - ------------- ----------------......--------------------------- Maximum Bending Stress Ratio = ------------------------------ -....._.. -------------- ......... _ ._........_.._.._........._......_.........._..._.....__.:_.........._._......._............._.._..._......... ----........._- - 0.738: 1 Maximum Shear Stress Ratio - 0.139 : 1 Section used for this span W12x26 Section used for this span W12x26 Ma: Applied 64.335 k-ft Va :Applied 7.798 k Mn / Omega: Allowable 87.218 k-ft Vn/Omega : Allowable '56.120 k Load Combination W Only Load Combination W Only Location of maximum on span 16.500ft Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection I Max Downward Transient Deflection 2.141 in Ratio = 184>=180 Max Upward Transient Deflection 0.000 in Ratio = 0 <180 Max Downward Total Deflection 1.958 in Ratio = 202 >=180 Max Upward Total Deflection 0.000 in Ratio = 0 <180 Vertical Reactions Load Combination Support 1 Support 2 Overall MINimum 0.014 0.014 D Only 1.227 1,227 +D+Lr 4.417 4.417 +D+0501-r 3.620 3.620 +D+0.60W 5.906 5.906 +D+0.70E 1.237 1.237 +D+0.750Lr+0.450W 7.129 7.129 +D+0.450W 4.736 4.736 +D+0.5250E 1.235 1.235 +0.60D+0.60W 5.415 5.415 +0.60D+0.70E 0.746 0.746 Lr Only 3.190 3.190 W Only 7.798 7.798 E Only 0.014 0.014 Support notation : Far left is #1 Values in KIPS Page 9 Project Title: 7-Eleven #38944 Engineer: Project ID: 20-1326RO Project Descr:136x119 Canopy DESCRIPTION: Purlin Weak Axis (Single Span Trib = 9.667') CODE REFERENCES Calculations perAISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy : Steel Yield: 50.0 ksi Beam Bracing : Completely Unbraced E: Modulus: 29,000.0 ksi Bending Axis: Minor Axis Bending W(0.09159) E(0.003620) 3plied Loads Beam self weight NOT internally calculated and added Loads on all spans... Uniform Load on ALL spans: W = 0.09159, E = 0.003620 k/ft DESIGN SUMMARY iviaximum isenaing caress Katio = Section used for this span Ma: Applied Mn / Omega: Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Vertical Reactions Load Combination Support 1 Overall MA)(imum 1.511 Overall MINimum 0.031 +0.60W 0.907 - E Only * 0.70 0.042 +0.450W 0.680 E Only * 0.5250 0.031 W Only 1.511 E Only 0.060 W 12x26 Span = 33.0 ft f ....... _........_._.---- _..__.... .............................. ...................................................... ...__..._._...... ........ - .... ............. ___-------- ............._........... _.................. _.... Service loads entered. Load Factors will be applied for calculations. U.blZ: "I Maximum Jnear 5iress Katio = W12x26 Section used for this span 12.468 k-ft Va : Applied 20.384 k-ft Vn/Omega : Allowable W Only Load Combination 16.500ft Location of maximum on span Span # 1 Span # where maximum occurs I ` 4.890 in Ratio = 80>= 0.000 in Ratio = 0 >= 2.936 in Ratio = 135 >= i 0.000 in Ratio = 0 >= _..__ _..__._.....__...._........_._...._. _........._.._........-.............. ............. ........... ........._............ Support notation : Far left is #1 Support 1.511 0.031 0.907 0.042 0.680 0.031 1.511 0.060 Values in KIPS W 12x26 1.511 k 98.648 k W Only 0.000 ft Span # 1 Page 10 Loads input for Enercalc Solutions: Purlin Beam End Span w/ Cant (Trib = 9.667') All loads applied correspond to the largest tributary area and largest reaction, therefore the analysis is based on applying conservative loads to the beams, columns, and connection design. Purlin Beam = W12x26 Material: A992 Fy= 50 ksi Loads from Decking D 5.00 psf Lr 20.00 psf S 0.00 psf Wdn 48.89 psf Ev 0.09 psf Lateral Loads Wh 91.59 plf Eh 3.62 plf Maximum Tributary width for purlin . 9.667 ft Purlin Load Combinations for Biaxial Bending (ASD) Stress Ratio Strong Axis Weak Axis D 0.098 Lr 0.255 S W 0.622 0.504 E 0.001 0.020 ASCE 7-10 Load Combinations (ASD 1. D 2. D+L 3. D+(Lr or S) 4..D + 0.75L + 0.75(Lr or S) 5a. D + 0.6*W 5b. D+0.7E 6a: D+0.75L+0.75(0.6W)+0.75(LrorS) 6b. D+0.75L+0.75(0.7E)+0.75(LrorS) 7. 0.6D+0.6*W 8. 0.6D + 0.7E STRONG WEAK COMBINED 1. 0.098 0.000 0.10 2. 0.098 0.000 0.10 3. 0.353 0.000 0.35 4. 0.289 0.000 0.29 5a. 0.471 0.302 0.77 5 b. 0.099 0.014 0.11 6a. 0.569 0.227 0.80 6b. 0.290 0.011 0.30 7. 0.432 0.302 0.73 8. 0.060 0.014 0.07 ASCE 7-10 CH. 12.4.3.2 SPECIAL SEISMIC LOAD COMBINATIONS (ASD) 5a. (1.0 + 0.14Sds)D + 0.70Qe O= 1.25 6. (1.0 + 0.105Sds) D + 0.525()Qe + 0.75S Sds= 0.061 8. (O.t - 0.145ds)D + 0.7QQe Controls <=1.0 Ok STRONG WEAK COMBINED 5a. 0.100 0.018 0.12 Controls <=1.2 Ok 6. 0.099 0.013 0.11 8. 0.059 0.018 0.08 G Page 11 Project Title: 7-Eleven #38944 Engineer: Project ID: 20-1326RO Project Descr:36x119 Canopy DESCRIPTION: Purlin Strong Axis (End Span w/ Cant. Trib = 9.667') CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy : Steel Yield : 50.0 ksi Beam Bracing : Beam bracing is defined Beam -by -Beam E: Modulus: 29,000.0 ksi Bending Axis : Major Axis Bending Unbraced Lengths Span # 1, Fully Braced Gnnn $ 9 Rrnrari n 1 /d Pnintc lied Loads ..........................._..__..._>._........... ....................,,...................._.._.....__....................._........................_1........ i D(0.04834).Lr(0.1933) W(0.4726) E(0.000870 Service loads centered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Loads on all spans... Uniform Load on ALL spans: D = 0.0050, Lr = 0.020, W = 0.04889, E = .000090 ksf, Tributary Width = 9.667 ft DESIGN SUMMARY rs • ... . ........................................ Maximum BendingStress Ratio 0.622: 1 Maximum _ . ... Shear Stress Ratio - 0.152 Section used for this span W12x26 Section used'for this span W12x26 Me: Applied 53.061 k-ft Va : Applied 8.514 k Mn / Omega': Allowable 85..258 k-ft Vn/Omega : Allowable 56.120 k Load Combination W Only Load Combination W Only Location of maximum on span 17.952ft Location of maximum on span 10.000 ft Span # where maximum occurs Span # 2 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward Transient Deflection 1.671 in Ratio = 236 >=180 Max Upward Transient Deflection -1.135 in Ratio = 211 >=180 Max Downward Total Deflection 1.530 in Ratio = 259 >=180 Max Upward Total Deflection -1.037 in Ratio = 231 >=180 Vertical Reactions Support notation : Far left is #1' Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAMmum 13.241 7.082 Overall MINimum 0.024 0.013 D Only 2.084 1.115 +D+Lr 7.500 4.012 +D+0.750Lr 6.146 3.287 j +D+0.60W 10.028 5.364 +D+0.70E 2.101 1.124 +D+0.750Lr+0.45OW 12.104 6.474 +D+0.450W 8.042 4.301 +D+0.5250E 2.096 1.121 +0.60D+0.60W 9.194 4.918 +0.60D+0.70E 1.267 0.678 Lr Only 5.416 2.897 W Only 13.241 7.082 E Only 0.024 0.013 Page 12 Project Title: 7-Eleven #38944 Engineer: Project ID: 20-1326RO Project Descr:36x119 Canopy DESCRIPTION: Purlin Weak Axis (End Span w/ Cant Trib = 9.667') CODE REFERENCES Calculations perAISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy : Steel Yield : 50.0 ksi Beam Bracing : Completely Unbraced E: Modulus: 29,000.0 ksi Bending Axis: Minor Axis Bending W12x26 Span = 10.0 ft W(0.09159) E(0.003620) W12x26 Span = 33-0 ft _..__...... ................... ........ _...... _.._......... _...................................... _.......................... _.......................... Applied Loads ..__..._.._................................._.................. _._.._..... _........ ................................... ............... ........ .................. ..........__................ -._..__.......... ......--...................... __..._.... ......_._ Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Loads on all spans... Uniform Load on ALL spans: W = 0.09159, E = 0.003620 k/ft DESIGN SUMMARY b ........... ........._.._......... .................. . -- :--------.._.._........_....._._..._...._._....._.................. Maximum Bending Stress Ratio = - ..._.____.._._.....-._._._......_......._.._......_................._........._........................................._........._..........._..........._............_.................__...__........._............_._...__......_.._.._.....:...._....._.._._._......._._.__.. 0.504: 1 Maximum Shear Stress Ratio = 0.017 : 1 Section used for this span W12x26 Section used for this span W12x26 Ma: Applied 10.283 k-ft Va : Applied 1.650 k Mn / Omega : Allowable 20.384 k-ft Vn/Omega : Allowable 98.648 k Load Combination W Only Load Combination W Only j Location of maximum on span 17.952ft Location of maximum on span 10.000 ft Span # where maximum occurs Span # 2 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward Transient Deflection 3.808 in Ratio = 103>= Max Upward Transient Deflection -2.593 in Ratio = 92 >= Max Downward Total Deflection 2.295 in Ratio = 173 >_ Max Upward Total Deflection -1.556 in Ratio = 154 >= Vertical Reactions Support notation: Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXrnum 2.566 1.372 Overall MINimum 0.053 0.028 +0.60W 1.540 0.823 E Only' 0.70 0.071 0.038 +0.450W 1.155 0.618 E Only' 0.5250 0.053 0.028 W Only 2.566 1.372 E Only 0.101 0.054 Page 13 Loads input for Enercalc Solutions: Header Beam Loads shown are for the maximum purlin tributary area. For all other purlins, these loads will be scaled to account for the proper tributary areas. Header Beam - W14x34 Material: A992 Fy= 50 ksi Loads from Purlins D 2.34 kips Lr 6.09 kips S 0.00 kips Wdn 14.88 kips Ev 0.03 kips Lateral Loads- Wh 0.89 kips Eh 0.11 kips Seismic for Beam Ev 0.41 plf Eh 1.65 plf Header Load Combinations for Biaxial Bending (ASD) f Stress Ratio Strong Axis Weak Axis D 0.163 Lr 0.371 S W 0.906 0.245 E 0.002 0.036 ASCE 7-10 Load Combinations (ASD) 1. D 6a. D+0.75L+0.75(0.6W)+0.75(LrorS) 2. D+L 6b. D+0.75L+0.75(0.7E)+0.75(LrorS) 3. D+(LrorS) 7. 0.61)+0.6*W 4. D + 0.75L + 0.75(Lr or S) 8. 0.6D+0.7E 5a. D+0.6*W 5b. D+0.7E STRONG WEAK COMBINED 1. 0.163 0.000 0.16 2. 0.163 0.000 0.16 3. 0.534 0.000 0.53 4. - 0.441 0.000 0.44 5a. 0.707 0.147 0.85 5 b. 0.164 0.025 0.19 6a. 0.849 0.110 0.96 Controls <=1.0 Ok 6b. 0.442 0.019 0.46 7. 0.641 0.147 0.79 8. 0.099 0.025 0.12 ASCE 7-10 CH. 12.4.3.2 SPECIAL SEISMIC LOAD COMBINATIONS (ASD) 5a. (1.0+0.145ds)D+0.7f)Qe Q= 1.25 6. (1.0 + 0.105Sds)D + 0.525QQe + 0.75S Sds= 0.061 1 8. (0.6-0.14Sds)D+0.711Qe STRONG WEAK COMBINED 5a. 0.166 0.032 0.20 Controls <=1.2 Ok 6. 0.165 0.024 0.19 8. 0.098 0.032 0.13 Page 14 Project Title: 7-Eleven #38944 Engineer: Project ID: 20-1326R0 Project Descr:36x119 Canopy DESCRIPTION: Header Strong Axis CODE REFERENCES INC.1983.2020, Build:12.20.1.31 , Calculations per AISC 360-10, IBC 2015,.CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy : Steel Yield : 50.0 ksi Beam Bracing : Beam bracing is defined Beam -by -Beam E: Modulus: 29,000.0 ksi Bending Axis : Major Axis Bending Unbraced Lengths Span # 1, Defined Brace Locations, First Brace at 3.50 ft, Second Brace at ft, Third Brace at ft Span # 2, Defined Brace Locations, First Brace at 1.167 ft, Second Brace at 10.833 ft, Third Brace at ft Span # 3, Defined Brace Locations, First Brace at 8.50 ft, Second Brace at ft, Third Brace at ft )plied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Loads on all spans... Uniform Load on ALL spans: E = 0.000410 k/ft Load(s) for Span Number 1 Point Load: D = 2.019, Lr = 5.247, W=12.827, E = 0.0240 k @ 3.50 ft, (From Purlin (Trib = 8.333)) Load(s) for Span Number 2 Point Load : D = 2.342, Lr = 6.087, W=14.880, E = 0.0270 k @ 1.167 ft, (From Purlin (Trib = 9.667')) Point Load : D = 2.342, Lr = 6.087, W=14.880, E = 0.0270 k @ 10.833 ft, (From Purlin (Trib = 9.667')) Load(s) for Span Number 3 Point Load : D = 2.019, Lr = 5.247, W=12.827, E = 0.0240 k @ 8.50 ft, (From Purlin (Trib = 8.333')) DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma: Applied Mn / Omega: Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Vertical Reactions U.UUb : 'I iviaximum snear stress Katlo = W14x34 Section used for this span 109.030 k-ft Va : Applied 120.297 k-ft Vn/Omega : Allowable W Only Load Combination 12.000ft Location of maximum on span Span # 1 Span # where maximum occurs 1.926 in Ratio = 149>= -0.293 in Ratio = 490 >_ 1.802 in Ratio = 160 >_ -0.275 in Ratio = 524 >_ Support notation : Far left is #1 Values in KIPS t W14x34 14.880 k 79.80 k W Only 10.880 ft Span # 2 Load Combination Support 1 Support 2 Support 3 Support 4 Overall MAXimum 27.707 27.707 Overall MINimum 0.058 0.058 D Only 4.973 4.973 +D+Lr 16.307 16.307 Page 15 +D+0.750Lr 13.474 13.474 Project Title: 7-Eleven #38944 Engineer: Project ID: 20-1326RO Project Descr:36x119 Canopy DESCRIPTION: Header Strong Axis Vertical Reactions Support notation : Far left is #1' Values in KIPS Load Combination Support Support Support Support +D+0.60W 21.597 21.597 +D+0.70E 5.014 5.014 +D+0.750Lr+0.45OW 25.942 25.942 +D+0.450W 17.441 17.441 +D+0.5250E 5.004 5.004 +0.60D+0.60W 19.608 19.608 +0.60D+0.70E 3.025 3.025 Lr Only 11.334 11.334 W Only 27.707 27.707 E Only 0.058 0.058 Page 16 Project Title: 7-Eleven #38944 Engineer: Project ID: 20-1326RO Project Descr:36x119 Canopy DESCRIPTION: Header Weak Axis CODE REFERENCES Calculations perAISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy : Steel Yield : 50.0 ksi Beam Bracing : Completely Unbraced E: Modulus: 29,000.0 ksi Bending Axis: Minor Axis Bending W(0.763 E(0.098) W(0.885 E(0.114) E 0.001650 W(0.885) E(0.114) i W(0.763 E(0.098) ., � ,... . ;y,y m3', W14x34 W14x34 W14x34 Span = 12.0 ft Span = 12.0 ft Span = 12.0 ft )plied Loads Beam self weight NOT internally calculated and added Loads on all spans... Uniform Load on ALL spans : E = 0.001650 k/ft Load(s) for Span Number 1 Point Load: W = 0.7630, E = 0.0980 k @ 3.50 ft, (From Purlin (Trib = 8.333')) Load(s) for Span Number 2 Point Load : W = 0.8850, E = 0.1140 k @ 1.167 ft, (From Purlin (Trib = 9.667')) Service loads entered. Load Factors will be applied for calculations. Point Load : W = 0.8850, E = 0.1140 k @ 10 833 ft, (From Purlin (Trib = 9.667')) Load(s) for Span Number 3 Point Load : W = 0.7630, E = 0.0980 k @ 8.50 ft, (From Purlin (Trib = 8.333')) DESIGN SUMMARY .:....... .... .... ......... ..... ................... _ .. Maximum Bending Stress Ratio = Section used for this span Ma: Applied Mn / Omega: Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection _---_._..._._._....._...._--- ....................... .................- --- Vertical Reactions 0.245: 1 Maximum Shear Stress Ratio = 0.007 : 1 W14x34 Section used for this span W14x34 6.486 k-ft Va : Applied 0.8850 k 26.447 k-ft Vn/Omega : Allowable 122.850 k W Only Load Combination W Only 12.000ft Location of maximum on span 10.880 ft Span # 1 Span # where maximum occurs Span# 2 1.671 in Ratio = 172 >= -0.255 in Ratio = 564 >_ 1.003 in Ratio = 287 >= -0.153 in Ratio = 941 >_ ........_..............._.._....... ....__.._.__._..._.......... _... ........ .._.:...__............_...._................_................................................. Support notation :'Far left is #1 Values in KIPS ................... Load Combination Support 1 . Support 2 Support 3. Support4 Overall MAXimum 1.648 1.648 Overall MINimum 0.127 0.127 +0.60W 0.989 0.989 E Only * 0.70 0.169 0.169 +0.450W 0.742 0.742 E Only * 0.5250 0.127 0.127 W Only 1.648 1.648 E Only 0.242 0.242 Page 17 TYP. PURLIN BEAM Purlin-Header Connection Design (ASD) HEADER STIFFENER PLATE BEAM / AS REO'D (4) 3/4" A307 BOLTS ___ i16(f1/2D_I-1' Cy EACH CONNECTION TYP.,3/16 1 3/16 /TYP. 3/16 T & B TYP. 3/16 T & B STIFFENER J PLATE NS & FS ---/// AS REO'D Max. Purlin Reaction Load Combos: D+0.75 Lr D+0.755 = 0.6D+0.6*W= = D+0.75(Lr or 5)+ 0.45*W= 0.6D+0.7E _ PRYING ACTION Purlin Beam - W32x26 Tension force T= 5.10 kips Fu= 65 kips bf= 6.49 in. g = 3.36 in. tf = 0.38 in. tw = 0.23 in. D = 12.2 in. b (Web to centerline of bolt)= g/2-tw/2 1.565 in. b'(moment arm) = b- db/2 .1.19 in. P (Effective flange width) 3.13 in. i1= 1.67 tmin 0.34 inch < tf ' OK+ No Stiffener Plates REQ'D for Prying LiKPI KIWI 6.91 0.00 2.34 0.00 13.60 0.40 10.33 0.53 1.42 0.08 Header Beam - W14x34 LiKPI KIWI 6.91 0.00 2.34 0.00 13.60 0.40 10.33 0.53 1.42 0.08 Header Beam - W14x34 Tension force T= 5.10 kips Fu= 65 kips bf= 6.75 in. g = 3.5 in. tf = 0.455 in. tw = 0.285i in. D = 14 in. b (Web to centerline of bolt)= g/2-tw/2 1.6075 in. b'(moment arm) = b- db/2 1.2325 in. P (Effective flange width) 3.215 in. O = 1.67 tmin 0.34 in < tf No Stiffener; Plates REQ'D for Prying Stiff PL Still Req•d at Each Purlin For Bracing Page 18 Ponding Check: (AISC 14th) 2.1 Simplified Design for Ponding Lp= 12 ft Ls= 33 ft S= 9.67 ft Ip= 340 in^4 Is= 204 in^4 Id= 0.218 in^4 < Cs= 0.18 Cp= 0.01 Cp+0.9Cs= 0.17 <_ Primary - W14x34 Secondary- W12x26 Decking - Metal Works, LLC Deck Ix Pos = 0.8835 in^4 °': OK Ix Neg = 0.4947 in^4 n Page 19 Column Top Plate Loads From Header Vertical D 4.97 k Wup -25.40 k Ev 0.06 k I Lateral W 6.04 k E 0.30 k i Column Tributary- 594sgft Top Plate Properties Fy = 50 ksi Uplift @ Top of Col .= 12.26 k Plate Thickness = 0.75 in Shear @ Top of Col= 3.63 k Plate Width = 12.00 in FS= 1.5 Plate Length = 19.00 in Column = HSS12x12x1/4 Cap Weld Design Column Typ = HSS Column Width = 12.00 in Lweld = 48 in Weld Strength Required = 19.17 k Cap Plate to Column Weld - Use 0.40 k m 48 in i min. 1/8" for weld per J2.4 AISC 2 /16" Fillet Weld Two Sides G.F. = 2 /16" PJP Groove Weld Two Sides G.F. = min.1/8" for weld per J2.3 AISC Cap Plate Bolts (Tension Due to Uplift) No. Bolts = �4 T/bolt= 18.38 k 4.60 kips/bolt 4 bolts V/bolt= 5.44 k 1.36 kips/bolt 4 bolts 0.75 in Dia A307 G.F. (Tension)= 9.94 kips G.F. (Shear)= ' 5.97 kips Combined UC= ' 0.27 <1 Use: (4) 3/4" 0 A307 1.86 k/in 01C 2.63 k/in (OIC Page 20 Column - HSS12x12x1/4 Material: A500 Gr. C Fy= 50 ksi Reactions from Worst Case Header Beam vertical D 4.97 kips Lr 6.87 kips S 0.00 kips Wdn 27.71 kips Reduced Roof Live Load Ev 0.07 kips Wind Lateral Wi, 6.04 kips applied at top of the column Seismic Lateral Ei, 0.27 kips applied at top of the column Total effective column height 16.18 ft # Columns in line Lateral Trib per Column Max Column Tributary Length - 33.00 ft 2 16.500 ft/col Controls Max Column Tributary Width - 18 ft 4 4.500 ft/col Column Vertical Tributary- 594 sgft Hole cut out in column: Column Properties: Cutout Properties: D= 12 in D= 5 in t= 0.233 in t= 0.233 in A= 10.8 inA2 A= 1.165 inA2 1= 248 inA4 1= 41.95 inA4 Z= 47.6 Column Properties with Cutout: A= 9.64 inA2 Max Allowable Stress Ratio = 0.85 1= 206.05 inA4 S= 34.34 inA3 An Increase of 1.2 is allowed for members designed R= 4.62 in using overstrength as per ASCE 7-10 12.4.3.3 Z= 40.61 inA3 Max Allowable Stress Ratio = 1.02 Seismic Load,Combinations with overstrength are required as per AISC 341-10 ASCE 7-10 CH. 12.4.3.2 SPECIAL SEISMIC LOAD COMBINATIONS (ASD) 5a. (1.0 + 0.14Sds)D + 0.7DQe f!= 1.25 6. (1.0 + 0.105Sds)D + 0.525DQe + 0.755 Sds= 0.061 8. (0.6 - 0.14Sds)D + 0.7f2Qe D S Ehoriz. 5a. 5.66 kips 0 kips 0.24 kips 6. 5.65 kips 0 kips 0.18 kips 8. 3.32 kips 0 kips 0.24 kips ASCE 7-10 12.2.5.2 Axial Strength Requirement Prc = 5.66 kips < 0.15*Pc = 26.55 kips OK Mud J Page 21 Project Title: 7-Eleven #38944 Engineer: I Project ID: 20-1326RO Project Descr:i36x119 Canopy DESCRIPTION: Column Code References Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used: ASCE 7-10 General Information Steel Section Name: HSS12x12x1/4 Overall Column Height 16.180 ft Analysis Method: Allowable Strength Top & Bottom Fixity Top Free, Bottom Fixed Steel Stress Grade Brace condition for deflection (buckling) along columns Fy : Steel Yield 50.0 ksi X-X (width) axis: ' E : Elastic Bending Modulus 29,000.0 ksi Unbraced Length for buckling ABOUT Y-Y Axis=16.180 ft, K = 2.1 Y-Y (depth) axis : I Unbraced Length for buckling ABOUT X-X Axis=16.180 ft, K = 2.1 Applied Loads Service loads entered. Load Factors will be applied for calculations. Column self weight included: 637.54 Ibs " Dead Load Factor AXIAL LOADS ... Axial Load at 16.180 ft, Xecc =1.0 in, Yecc =1.0 in, D = 4.970, LR = 6.870, W = 27.710, E = 0.0tU k BENDING LOADS ... Lat. Point Load at 16.180 ft creating Mx-x, W = 6.040, E= 0.270 k DESIGN SUMMARY Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = 0.7798 : 1 Maximum Load Reactions.. Load Combination +D+0.60W Top along X-X 0.0 k Location of max.above base 0.0 ft Bottom along X-X 0.0 k At maximum location values are ... Top along Y-Y 0.0 k Pa: Axial 22.234 k Bottom along Y-Y 6.040 k Pn / Omega: Allowable 177.275 k Ma-x : Applied -60.436 k-ft Maximum Load Deflections ... Mn-x/ Omega: Allowable 86.793 k-ft Along Y-Y 2.111 in at 16.180ft above base for load combination: W Only Ma-y:Applied -1.80 k-ft Mn-y / Omega: Allowable 86.793 k-ft Along X-X 0.07214 in at 16.180 ft above base for load combination : W Only PASS Maximum Shear Stress Ratio = 0.03831 :1 Load Combination +D+0.60W Location of max.above base 0.0 ft At maximum location values are.. . Va : Applied 3.624 k Vn / Omega: Allowable 94.604 k Load Combination Results Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Cbx Cby KxLx/Rx KyLy/Ry Stress Ratio Status Location D Only 0.025 PASS 0.00 ft 1.64 1.00 85.12 85.12 0.000 PASS 0.00 ft +D+Lr 0.058 PASS 0.00 ft 1.64 1.00 85.12 85.12 0.000 PASS 0.00 ft +D+0.750Lr 0.050 PASS 0.00 ft 1.64 1.00 85.12 85.12 0.000 PASS 0.00 ft +D+0.60W 0.780 PASS 0.00 ft 1.64 1.00 85.12 85.12 0.038 PASS 0.00 ft +D+0.910E 0.071 PASS 0.00 It 1.64 1.00 85.12 85.12 0.003 ,PASS 0.00 ft +D+0.750Lr+0.45OW 0.616 PASS 0.00 ft 1.64 1.00 85.12 85.12 0.029 PASS 0.00 ft +D+0.450W 0.591 PASS 0.00 ft 1.64 1.00 85.12 85.12 0.029 PASS 0.00 ft +D+0.6825E 0.060 PASS 0.00 ft 1.64 1.00 85.12 85.12 0.002 PASS 0.00 ft +0.60D+0.60W 0.770 PASS 0.00 ft 1.64 1.00 85.12 85.12 0.038 PASS 0.00 ft +0.60D+0.910E 0.061 PASS 0.00 ft 1.64 1.00 85.12 85.12 0.003 PASS 0.00 ft Maximum Reactions Note: Only non -zero reactions are listed. Axial Reaction X-X Axis Reaction k Y-Y Axis Reaction Mx - End Moments k•ft My - End Moments Load Combination @ Base @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top D Only 5.608 -0.414 -0.414 +D+Lr 12.478 -0.987 -0.987 +D+0.750Lr 10.760 -0.844 -0.844 Page 22 DESCRIPTION: Column Maximum Reactions Load Combination Axial Reaction @ Base +D+0.60W 22.234 +D+0.70E 5.657 +D+0.750Lr+0.45OW 23.230 +D+0.450W 18.077 +D+0.5250E 5.644 +0.60D+0.60W 19.991 +0.60D+0.70E 3,414 Lr Only 6.870 W Only 27.710 E Only 0.070 Extreme Reactions Project Title: 7-Eleven #38944 Engineer: Project ID: 20-1326RO Project Descr:36x119 Canopy Note: Only non -zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Mx - End Moments k-ft My - End Moments @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top 0.189 -3.476 -0.418 2.718 -45.860 -1.883 2.718 -45.431 -1.453 0.142 -2.711 -0.417 3.624 -60.270 -1.634 0.189 -3.311 -0.253 -0.573 -0.573 6.040 -100.036 -2.309 0.270 4.374 -0.006 Axial Reaction X-X Axis Reaction k Y-Y Axis Reaction Mx - End Moments k-ft My - End Moments Item Extreme Value @ Base @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top Axial @ Base Maximum 27.710 6.040 -100.036 -2.309 " Minimum 0.070 0.270 -4.374 -0.006 Reaction, X-XAxis Base Maximum 5.608 -0.414 -0.414 " Minimum 5.608 -0.414 -0.414 Reaction, Y-Y Axis Base Maximum 27.710 6.040 -100.036 -2.309 " Minimum 5.608 -0.414 -0.414 Reaction, X-XAxis Top Maximum 5.608 -0.414 -0.414 " Minimum 5.608 -0.414 -0.414 Reaction, Y-Y Axis Top Maximum 5.608 -0.414 -0.414 " Minimum 5.608 -0.414 -0.414 Moment, X-XAxis Base Maximum 5.608 -0.414 -0.414 -0.414 " Minimum 27.710 -100.036 6.040 -100.036 -2.309 Moment, Y-Y Axis Base Maximum 0.070 0.270 -0.414 -0.006 " Minimum 27.710 6.040 -0.414 -2.309 Moment, X-XAxis Top Maximum 5.608 -0.414 -0.414 " Minimum 5.608 -0.414 -0.414 Moment, Y-Y Axis Top Maximum 5.608 -0.414 -0.414 " Minimum 5.608 -0.414 -0.414 Page 23 Base Plate Design and Anchor Bolts Check Loads for Base Plate Design Reactions Base on Column 22" 16" 41 22" 3 Column = HSS12x12x1/4 M D 5.61 kips Lr 6.87 kips S 0.00 kips W„p -25.40 kips Wdn 27.71 kips E 0.07 kips Wh 6.04 kips Wind load lateral Eh 0.27 kips Seismic Lateral Wm 97.83 k-ft Em 4.42 k-ft Base Weld Design Loads Column Typ = HSS Pu= -11.9 kips Column Width = 12 in V= 3.63 kips L weld = 48 in M= 58.70 k-ft S weld = 192.0 inA2 Safety Factor = 1.5 Tension Weld Strength Required = 17.81 k + 1057 k-in = 5.87 k in 48 in 192.0 inA2 Shear Weld Strength Required = 5.44 k = 0.11 k in 48 in Combined Weld Strength Required = 5.87 k in ' min. 1/8" for weld per J2.4 AISC Base Plate to Column Weld - Use: 7 /16" Fillet Weld All Around G.F. = 6.50 k/inOl< Anchor Bolts Capacities For F1554 Gr 55 Anchors , Futa 75.00 ksi Number of Anchor Rods in Tension 2 Number of Anchor Rods in Shear 4 Size of Anchor bolt d 1 1/4 in hef= 25.75 in Area of Anchor Bolt Area A5e 0.97 sgin Steel Strength of Anchor in Tension ACI D.5.1 ON. = m *Ase*Futa m = 0.75 (DN� 54.51 k/bolt ` Steel Strength of Anchor in Shear ACI D.6.1 mVs = (D*.60 *Ase*Futa m = 0.65 mVs = 28.35 k/bolt Page 24 Project Title: 7-Eleven #38944 Engineer: Project ID: 20-1326RO Project Descr:36xl 19 Canopy DESCRIPTION: Base Plate and Anchor Bolt Code References Calculations per AISC Design Guide # 1, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 General Information Material Properties AISC Design Method Load Resistance Factor Design (D c : LRFD Resistance Factor 0.60 Steel Plate Fy = 50.0 ksi Concrete Support fc = 3.0 ksi Assumed Bearing Area: Bearing Area = P / Fp Nominal Bearing Fp per J8 2.550 ksi Column & Plate Column Properties Steel Section : HSS12xl2xl/4 Depth 12 in Area 10.8 in^2 Width 12 in Ixx in14 Flange Thickness 0.233 in lyy in^4 Web Thickness in Plate Dimensions Support Dimensions N : Length 22.0 in Width along "X" 22.0 in B : Width 22.0 in Length along "Z' 22.0 in Thickness 1.250 in Column assumed welded to base plate. Applied Loads ................_._..._..._............................._...._.............................................. P-Y V-Z M-X ........................ D : Dead Load ....... 5.610 k k k-ft L : Live ....... k k k-ft Lr : Roof Live ......... 6.870 k k k-ft S : Snow ................ k k k-ft W: Wind ................ 27.710 k 6.040 k 97.830 k-ft E: Earthquake .............. 0.070 k 0.270 k 4.420 k-ft H : Lateral Earth ......... k k k-ft " P ' = Gravity load, '+" sign is downward. "+" Moments create higher soil pressure at +Z edge. "+" Shears push plate towards +Z edge. 1'-10" Z Anchor Bolts Anchor Bolt or Rod Description 1.25 •_ '—^+— — Max of Tension or Pullout Capacity........... 54.510 k • Shear Capacity ......................................... 28.350 k Edge distance: bolt to plate ................... 3.0 in Number of Bolts in each Row ................... 2.0 Number of Bolt Rows ........................ 1.0 • • • x Page 25 Project Title: 7-Eleven #38944 Engineer: Project ID: 20-1326R0 Project Descr:36x119 Canopy DESCRIPTION: Base Plate and Anchor Bolt GOVERNING DESIGN LOAD CASE SUMMARY _- _............................................_ Mu : Max. Moment: _._....._._.............................. ....._.._................. _............. ..._........... 14.001 k-in Plate Design Summary fb : Max. Bending Stress ............... 35.843 ksi Design Method Load Resistance Factor Design Fb : Allowable: 45.000 ksi Governing Load Combination +1.20D+1.60Lr+0.50W Fy' Phi Governing Load Case Type Axial + Moment, LI2 < Eccentricity, Tension on Bending Stress Ratio 0.797 Governing STRESS RATIO 1.0 Bending Stress OK Design Plate Size V-10" x V-10" x 1 -114" fu : Max. Plate Bearing Stress .... 1.530 ksi Pu : Axial ......... 32.759 k Fp : Allowable: 1.530 ksi Mu: Moment........ 97.830 k-ft Bearing Stress Ratio 1.000 Bearing Stress OK Tension in each Bolt ................... 24.977 Allowable Bolt Tension ............... 54.510 Tension Stress Ratio 0.458 Tension Stress OK Page 26 Foundation Footing Designs Loads for FDN Design Vertical Wind load lateral Seismic Lateral D 5.61 kips Lr 6.87 kips S 0.00 kips W p -25.40 kips Wdn 27.71 kips E 0.07 kips Wi, 6.04 kips Ei, 0.27 kips Wm 97.83 kip-ft Em 4.42 kip-ft Geotechnical Report Data Geotechnical Company: Ardaman & Associates, Inc. Project/Report No: 19-1651 Date: 6/3/2019 Preferred Footing Spread Footing Allowable Bearing pressure= 2500 psf Allowable lateral. pressure = 150 psf/ft Coeffiecient of Friction = 0.25 Soil Density= 110 pcf Concrete Density= 145 pcf Footing Width 7.00 ft Footing Depth 2.50 ft Depth of Soil Above 3.00 ft Total Depth of Footing 5.50 ft Check Uplift Wind Uplift= -25.40 kips Soil Weight= 13.48 kips Weight of FDN = 17.76 kips Dead Load at FDN = 36.85 kips Overturning and Bearing Checked in Enercalc Page 27 Project Title: 7-Eleven #38944 Engineer: Project ID: PO-1326RO Project Descr:36x119 Canopy DESCRIPTION: Spread Footing Code References Calculations per ACI 31.8-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used: ASCE 7-10 General Information Material Properties Soil Design Values fc : Concrete 28 day strength = 3.0 ksi Allowable Soil Bearing = 2.50 ksf fy : Rebar Yield = 60.0 ksi Increase Bearing By Footing Weight = No Ec : Concrete Elastic Modulus = 3,122.0 ksi Soil Passive Resistance (for Sliding) = 150.0 pcf Concrete Density = 145.0 pcf Soil/Concrete friction Coeff. - 0.250 cp Values Flexure = 0.90 Shear = 0.750 Increases based on footing Depth Analysis Settings Footing base depth below soil surface = 5.50 ft Min Steel %Bending Reinf. = Allow press. increase per foot of depth = ksf Min Allow % Temp Reinf. = 0.00090 when footing base is below = ft Min. Overturning Safety Factor = 1.0 :1 1 Min. Sliding Safety Factor = 1.0 :1 Increases based on footing plan dimension Add Ftg Wt for Soil Pressure Yes Allowable pressure' increase per foot of depth Use fig wt for stability, moments & shears Yes = ksf Add Pedestal Wt for Soil Pressure No when max. length or width is greater than = ft Use Pedestal wt for stability, mom & shear No Dimensions Width parallel to X-X Axis = 7.0 ft Length parallel to Z-Z Axis = 7.0 ft Footing Thickness = 30.0 in Pedestal dimensions... px : parallel to X-X Axis = pz : parallel to Z-Z Axis = Height = Rebar Centerline to Edge of Concrete... at Bottom of footing = Reinforcing Bars parallel to X-X Axis Number of Bars = Reinforcing Bar Size = Bars parallel to Z-Z Axis Number of Bars = Reinforcing Bar Size = Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation # Bars required within zone # Bars required on each side of zone kwlied Loads 8.0 # 5 8.0 # 5 n/a n/a n/a D Lr P : Column Load = 5.610 6.870 OB : Overburden = ............ ................:._.............................. _...........:................... M-xx = M-zz = ................ ............ ...... ... ............................ ..... V-x = V-z = Page 28 Project Title: 7-Eleven #38944 Engineer: Project ID: 20-1326RO Project Descr:36x119 Canopy DESCRIPTION: Spread Footing DESIGN SUMMARY MNNKr - Min. Ratio Item Applied Capacity Governing Load Combination PASS 0.9280 Soil Bearing 2.320 ksf 2.50 ksf +D+0.60W about Z-Z axis PASS n/a Overtuming -X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 2.084 Overturning - Z-Z 67.758 k-ft 141.230 k-ft +0.60D+0.60W PASS 5.862 Sliding -X-X 3.624 k 21.244 k +0.60D+0.60W PASS n/a Sliding - Z-Z .0.0 k 0.0 k No Sliding PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.3046 Z Flexure (+X) 12.943 k-ft/ft 42.492 k-ft/ft +1.20D+0.50Lr+W PASS 0.08346 Z Flexure (-X) 3.547 k-ft/ft 42.492 k-ft/ft +1.20D+W PASS 0.1114 X Flexure (+Z) 4.735 k-ft/ft 42.492 k-ft/ft +1.20D+0.50Lr+W PASS 0.1114 X Flexure (-Z) 4.735 k-ft/ft 42.492 k-ft/ft +1.20D+0.50Lr+W PASS 0.1164 1-way Shear (+X) 9.567 psi 82.158 psi +0.90D+W PASS 0.03863 1-way Shear (-X) 3.174 psi 82.158 psi +1.20D+W PASS 0.03659 1-way Shear (+Z) 3.006 psi 82.158 psi +1.20D+0.50Lr+W PASS 0.03659 1-way Shear (-Z) 3.006 psi 82.158 psi +1.20D+0.50Lr+W PASS 0.07124 2-way Punching 11.706 psi 164.317 psi +1.20D+0.50Lr+W Page 29 • I MC0Anchor Bolt Design for Spread Footing SALES AND MANUFACTURING 3113 Saint Louis Ave. Fort Worth, TX 76110 Anchor Bolt (ASTM F1554, Gr. 55), Xa = 1.0 for cast -in-place anchors in normal weight concrete (ACI 318 Section 8.6 and D3.6) ANCHOR ROD GROUP CHECK (Per ACI318-14 Chapt. 17 Anchoring to Concrete) Tensile Force on Anchors (Nu) = Nu 49.95 kips Shear force on Anchors (Vu) = Vu 6.04 kips Seismic Design Category = A Number of Anchors (n) n 4 Number of Anchors in Tension (n) = 2 Anchor Diameter (da) = da 1.25 inch Anchor Area (Ase) = 0.97 Sq. inch. Embed Washer with Nut = No Anchor Spacing perpendicular to load (S1)= 16 inch Anchor Spacing Parallel to load (S2)= 16 inch Spacing of Outer Anchors (So) = 16 inch Embedment Depth of Anchor on Concrete (hEr) 25.75 inch Yield Strength of Anchors (Fy) = 55 ksi Tensile Strength of Anchors (Futa) 75 ksi Edge distance in Load Direction (Cal) 34 inch Edge distance perpendicular to Load (Ca2) 34 inch Concrete strength (f'c) = 3000 psi Axial Eccentricity (e'N)= 0 inch Shear Eccentricity (e'v)= 0 inch Footing Width = 7.00 ft Page 30 0 I. Steel Strength of Anchors in Tension (Eq. 17.4.1) Nsa =n*Ase*futa =< 1.9*Fy or 125 ksi N. futa = < 1.9 Fy or 125 ksi = 104.50 ksi s futa = Min(1.9 Fy,Futa,125) 75.00 ksi Thus Nsa = n*Ase*futa 145.37 kips m = 0.75 m Nsa = 109.03 kips OK' II. Concrete Breakout Strength of Anchors in Tension (17.4.2) mNcbg 0= 75 N{ N ♦ 1 1 L_ o C—C-16 8reakaae ANC = projected Concrete failure area of a single anchor or group of anchors, for calculation of strength intension ANc 5712.00 sq. inch ANco = projected Concrete failure area of a single anchor, for calculation of strength in tension if not limited by edge distance or spacing. ANco= 9*hEF^2 = 4624.00 sq. inch V Yec,N= Factor used to modify tensile strength of anchors based on eccentricity of applied loads Yec,N = 1/(1+2e'N/3*hEF)=<1.0 1.000 Ca(min) < 1.5hEF 1.5hEF 38.625 in Adjusted hEF hEF 22.667 in Yed,N= Factored used to modify tensile strength of anchors based on proximity to edges of concrete members yed,N = 0.7 +(0.3* Ca;min/1.5 hEF) Yed,N 1.000 Yc,N 1.00 Ycp,N 1.00 Kc 24 Nb 142 kips Then Ncbg=ANJANw* Yec,NYed,Nyc,Nycp,N•Nb mNcbg 175.24 kips For a group anchors 131.43 kips OIC N Page 31 7 III. Pullout strength of Anchors in Tension (17.4.3) (I)Np. = in group Bearing Area of Hevy Hex. Anchor Bol ABRG 2.24 sq. inch t Np = 8* ABRG*f'c Np 53.69 kips Cracking at Service Loads? Yes Ye,p 1 Number of tensile Anchors n 2 NPN = n*Yc,P*Np NPN = 107 kips = 0.7 CDNPN(g-up) 75_16 kips CiK purrnrt7 IV. Side -face Blowout of Anchors in Tension (17.4.4) mNsbg = m = 0.75 hEF>2.5Cal 2.5Cal= 85 51<6Ca1 6Ca1= 204W?2 R So that Side -Face Blowout will not Control Ca2<3Ca1 Yes R=(1+Ca2/Cal)/4 0.50 N56=160*Ca1.Xa *(ABRG)Aos * f cAs* R �� Thus Nsb = 222.82 222.82 kips Therefore Nsbg = (1+sB/6cal)*Nsb 240.30 kips a° so = distance between outer anchors along the edge Sure -face 6luwnat Thus mNsbg = 180.23 kips i1K V. Steel Strength of Anchor in Shear (Eq.17.5.1.5 mVsa = m = 0.65 Y. For cast -in headed bolts where sleeves do not extended through the shear plane - r' Built-up grout,pads used? ;.Yes V,=0.6 * n*Ase* Fut 87.22 kips C3 A0 ry Thus (DVsa 56 69 kips > 6.04 kips 3K VI. Concrete Break out Strength of Anchors in Shear (17.5.2) Vcbg=(Avc/Aveo)*Ye,vYed,vY,,vYh,v.Vb Eg17.5.2.1b) SreelfuiNreprecee<W by concrete srstill For shear force perpendicular to the edge on a group of anchors Avc = Projected concrete Failure Area group of anchors for calculation of strength of shear Avc .(Ca2+s+Ca2)*(1.5Cal) Ave 4284.00 Sq. inch A_ = Projected concrete failure area of a single anchor for calculation of strength in shear. i if not limited by corner influences, spacing, or member thickness Avco= 4.5*(Cal)A2 Avco 5202.00 Sq. inch c.o 'u Avc=<n*kco pK Yec,v = Modification factor for Anchor group loaded eccentrically in shear _,._ _ _� I �.___...... y..° S�eetjoFluiayrce 11,d Cone Y - 1/(1+2e'v/3ca1)<=1.0 Y = 1.00 eR. °F, o•°�� ec,v— ec,v bYe F i f j atroe eggs Ca2 >= 1.5*Cal ? No Since cat = cal = 16 inch. c� Yed,v=modification factor edge effects for anchors loaded in shear a a . -- Y. 0. Yed,v= 0.7+0.3*(ea2/1.5ea1) Yed,v= 0.90 ��e c, Cracking and Service loads? Yes - I ' YC,v = modification factor for concrete condition at service load ever pedestal ties resist cracking and act as supplemental reinforcement Yc,v = 1:20 Yh,v = Modification factor for member thickness in relation to anchor embedment depth ha > hEF 'Vh,v - 1.00 Vb = the basic concrete break out strength in shear of single anchor in cracked concrete Vb1= [7(le/da)A0.2* (daA0.5))*Xa*f'cA0.5*(cal)A Eq. 17.5.2.2a) Page 32 le = loaded bearing length of the anchor for shear le = hEF le<= 8*da le Vb(a) = 7*(le/da)AO.2*(da)A0.5*(f'c)A0.5*(ca1)A1.5 Vb(a) Vb(b) = 9*xa*(f'cA0.5)*(calA1.5) Vb(b) Thus Vb = Min(Vbl, Vb2) Vb C_ Thus mVcbg= (Avc/Avco)* Yeo,VYed,VYc,VYh,v.Vb r, VII. Concrete pryout strength of Anchor in Shear (17.5.3) Vcpg = Kcp*Ncpg Eq. 17.5.3.1b When hEF Thus Kcp Ncpg = basic concrete pryout strength of a group of a anchors Recallin Ncpg Vcpg m= Thus OVcpi VIII Anchor Rods Group Capacity Allow. Tension mNn Allow. Shear mVn IX Check Shear / Tension Interaction If Nua/DNn <= 0.2 Therefor full shear design strength is not permitted If Vua/mVn < = 0.2 Full Tension design is permitted Nua/(I)Nn + Vua/(I)Vn = 0 10 inch 128.81 kips 97.73 kips 97.73 kips 0.7 60_84 kips > 6.04 kips OK ( v, ~l n� 25.75 inch. oa � u Concrrleprpaut 2 ! �s 175.24 kips 350.47 kips 0.7 245.33 kips> 6.04kips!OK 75.16 kips > 49.95 kips .OK€ 54.00 kips > 6.04 kips„OK � 0.66 No 0.11 Yes 0.78 < 1.2 OK r I Page 33