Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
REVISIONS, FINAL CALCULATIONS 4410 4.12.21
(rD G&D BUILDING SOLUTIONS NEW RAILINGS FOR SION HOMES 4410 N HWY Al A FORT PIERCE, FL 34949 RAILINGS SHOP DRAWINGS STRUCTURAL CALCULATIONS y„FER..q. Digitally signed :�OP••�,O ENS., P`'4by Danay ' No 77142 .: Fernandez :�= Date: :9•, STATE OF 2021.04.08 13:52:11-04'00' Designed by: Danay Fernandez, P.E. Lic. No. 77142 1 G&D BUILDING (rD SOLUTIONS PROJECT NAME: INTERIOR & EXTERIOR RAILINGS FOR: SION HOMES ADDRESS: 4410 N HWY A1A, FORT PIERCE, FL 34949 Design Criteria: Calculations based on: 1. 2020 Florida Building Code — 7th EDITION 2. Minimum Design Loads for Buildings and other Structures ASCE 7-16 3. Building Code Requirements for Structural Concrete ACI 318-08 4. American Institute of Steel Construction AISC-15 Edition 5. Specifications for the Design of Cold -Formed Stainless Steel Structural Members SEI/ASCE8-02 CALCULATION INDEX: I. Cover Page...................................................................1 II. Index...........................................................................2 III. Wind Analysis................................................................3-5 IV. Glass Clamp Railing Fascia Mount....................................6-14 V. Glass Clamp Railing Top Mount.........................................15-17 VI. Bar and Tube Infills Railing Top Mount..............................18-27 This computation book contains manual and computerized structural calculations, pages are numbered 1 thru 27 including this page. Computations were performed to the best of my knowledge according to sound and generally accepted engineering principals and code requirements. The sign and seal provided herein are meant to cover all computation sheets pages 1 through 27. �Py `FERNgtio Digitally Signed �` P:•'GENS' F• Sincerely, . x"°Fernandez o, IT— of � Date: 2021.04.08 °S%oNP 14:44:25-04'00' Danay Fernandez, PE FL Reg. PE No. 77142 ENGINEERS & GENERAL CONTRACTORS 1310 NW 67th Ter. Hollywood, FL 33024 1 PE 77142 1 CGC 1514512 1 CCC 1328768 305.773.7973 1 projects@gdbuildingsolutions.com I gdbuild ingsolutions.com 2 WIND ANALYSIS MecaWind v2318 Software Developer: Meca Enterprises Inc., www.meca.biz, Copyrignt - 20ib Calculations Prepared by: Date: Apr 06, 2021 File Location: \\GUIDOHOMESERVER\GDBuildingSolutions\2021 JOBS\ARMANDO REYES\CALCULATION\ GLASS WIND CALCULATION.wnd Basic Wind Parameters Wind Load Standard = ASCE 7-16 Exposure Category = D Wind Design Speed = 170.0 mph Risk Category = III Structure Type = Building Building Type = Enclosed General Wind Settings = ASCE 7-16 Wind Parameters = Incl_LF = Include ASD Load Factor of 0.6 in Pressures = True DynType = Dynamic Type of Structure = Rigid NF = Natural Frequency of Structure (Mode 1) = 1.000 Hz NF = Natural Frequency of Structure = 1.000 Hz Zg = Altitude (Ground Elevation) above Sea Level = 0.000 ft Bdist = Base Elevation of Structure = 0.000 ft GenElev = Specify the Elevations For Wind Pressures = Mean Roof Ht SDB = Simple Diaphragm Building = False MWFRS = Analysis Procedure being used for MWFRS = Ch 27 Pt 1 C&C = Analysis Procedure being used for C&C = Ch 30 Pt 1 MWFRSType = MWFRS Method Selected = Ch 27 Pt 1 Topographic Factor per Fig 26.8-1 Topo = Topographic Feature = None Kzt = Topographic Factor = 1.000 Building Inputs RoofType: Building Roof Type = Hipped Hipped = W Width Perp to Ridge = 64.000 ft L Length Along Ridge = 73.000 ft EHt Eave Height = 37.000 ft Hip Ridge Hipped Length = 15.000 ft RE Roof Entry Method = Slope Slope Slope of Roof = 4.0 :12 OH Specify Roof to Wall intersection and Overhang= Sofit Theta Roof Slope Par Is there a Parapet = False OH ALL : Sofit = 2.000 ft Exposure Constants per Table 26.11-1: Alpha: Const from Table 26.11-1= 11.500 Zg: Const from Table 26.11-1= 700.000 ft At: Const from Table 26.11-1= 0.087 Bt: Const from Table 26.11-1= 1.070 Am: Const from Table 26.11-1= 0.111 Bm: Const from Table 26.11-1= 0.800 C: Const from Table 26.11-1= 0.150 Eps: Const from Table 26.11-1= 0.125 Overhang Inputs: Std = Overhangs on all sides are the same = True OHType = Type of Roof Wall Intersections = Sofit OH = Overhang of Roof Beyond Wall = 2.000 ft Gust Factor Calculation: Gust Factor Category I Rigid Structures - Simplified Method G1 = For Rigid Structures (Nat. Freq.>1 Hz) use 0.85 = 0.85 Gust Factor Category II Rigid Structures - Complete Analysis Zm = 0.6 * Ht = 25.400 ft Izm = Cc * (33 / Zm) 0.167 = 0.157 Lzm = L * (Zm / 33) Epsilon = 629.076 Q = (1 / (1 + 0.63 * ((B + Ht) / Lzm)^0.63))^0.5 = 0.911 G2 = 0.925*((1+1.7*lzm*3.4*Q)/(1+1.7*3.4*lzm)) = 0.886 Gust Factor Used in Analysis G = Lessor Of G1 Or G2 = 0.850 Components and Cladding (C&C) Calculations per Ch 30 Part 1: � � d 3 ® 3 ©i 1 z� z� �, i ae 5. Roof not Shown I I :5 4 4 , 0 = 18.43 Deg OO Walls S 5 _t----�- 4 LEI ca 3 2e 3 a a lal PLAN h = Mean Roof Height above grade = 42.333 ft Kh = 15 ft [4.572 m]< Z <Zg-->(2.01*(Z/zg)^(2/Alpha) {Table 26.10-11= 1.234 Kzt = Topographic Factor is 1 since no Topographic feature specified = 1.000 Kd = Wind Directionality Factor per Table 26.6-1 = 0.85 GCPi = Ref Table 26.13-1 for Enclosed Building = +/-0.18 LF = Load Factor based upon ASD Design = 0.60 qh = (0.00256 * Kh * Kzt * Kd * Ke * V^2) * LF = 46.56 psf LHD = Least Horizontal Dimension: Min(B, L) = 64.000 ft a1 = Min(0.1 * LHD, 0.4 * h = 6.400 ft a = Max(al, 0.04 * LHD, 3 ft [0.9 m]) = 6.400 ft h/B = Ratio of mean roof height to least hor dim: h / B = 0.661 Wind Pressures for C&C Ch 30 Pt 1 All wind pressures include a load factor of 0.6 Description Zone Width Span Area 1/3 Ref GCp GCp p p Rule Fig Max Min Max Min ft ft ft sq ft psf psf ------------- ---- ------ ------------- ---- ------ ----- ------ ----- ------ BALCONY GLASS 4 48.000 36.000 1728.00 No 30.3-1 0.700 -0.800 40.97 -45.63 Area = Span Length x Effective Width 1/3 Rule = Effective width need not be less than 1/3 of the span length GCp = External Pressure Coefficients taken from Figures 30.3-1 through 30.3-7 p = Wind Pressure: qh*(GCp - GCpi) [Eqn 30.3-1]* *Per Para 30.2.2 the Minimum Pressure for C&C is 9.60 psf [0.460 kPa] {Includes LF] N1 GLASS CLAMP RAILING FASCIA MOUNT BRACKET CONNECTION TO PLATE 200 "s 4o'n ULs z 0 .�-�-d bra, sties v_ W S Y. W x CONCRETE v STEP i 3500 PSI Tt U: Igo .1.(05 �Ss � rn�- `ocu rS °�. IoR�.t�1SVARIES MAX 5"��,/ z jo LLs �,r +i-r� /2,.: i� = 8000 �r -in T, V�, / a = goo 4/006 "s - I n 3 � n - �+ � (0 7 Lovp � I 4-6-s /Z - S 4,S33 �kr "s + 1 T v L 333 VoS +� S l'15 LLs 7 19. FASTENER LOAD TABLES B. Unified Coarse Threads TABLE 5 Nominal Thread Diameter & Thread/Inch #6-32 #1-32 # 10-24 # 12-24 1/4-20 5/16-18 3/8-16 7/16-14 1/2-13 9/16-12 5/8-11 3/4-10 718-9 1-8 Nominal Thread Diameter & Thread/inch #6-32 #8-32 # 10-24 # 12-24 1/4-20 5/16-18 3/8-16 7/16-14 1 /2-13 9116-12 5/8-11 3/4-10 7/8-9 1-8 D Nominal Thread Diameter (inch) 0.A- 0.1640 0.1900 0.2160 0.2500 0.3125 0.3750 0.4375 0.5000 0.5625 0.6250 0.7500 0.8750 1.0000 D Nominal Thread Diameter (Inch) 0.1380 0.1640 0.1900 0.2160 0.2500 0.3125 0.3750 0.4375 0.5000 0.5625 0.6250 0,7500 0.8750 1.0000 A(S)Tensile Stress Area (Sq. In.) 0.0175 0.0242 0.0318 0.0524 0.0775 0.1063 0.1419 0.1819 0.3068 0.4418 0.6013 0.7854 A(S)Tensle Stress Area (Sq. In.) 0.0091 0.0140 0.0175 0.0242 0.0318 0.0524 0.0775 0.1063 0.1419 0.1819 0.3068 0.4418 0.6013 0.7854 A(R) Allowable Thread Tension Root Area (Pounds) (Sq. In.) O.w78 ' 269 0.0124 414 0.0152 518 0.0214 -716 0.0280 941 0.0469, 1551 0.0699 2294 0.0961 3146 0.1292 4200 0.1664 5384 0.2071 6136 0.3091 8836 0.4286 12026 0.5630 15708 A(R) Allowable Thread Tension Root Area (Pounds) (Sq. in.) 0.0078 437 0.0124 672 0.0152 840 0.0214 1162 0.0280 1526 'N 0.0469 2515 0.0699 3720 0.0961 5102 0.1292 6811 0.1664 8731 0.2071 12149 0.3091 17495 0.42116 23811 0.5630 31102 Allowable Shear Single rouble (Pounds) (Pounds) 133 267 21.2 I 424 260 520 366 731 479 957 802 1603 1195 2389 1642 3285 2208 4416 2844 5687 3068 6136 4418 8836 6013 12026 7854 15708 For Diameters up thru 9/19% Minimum Material Thickness to Bearing (Pounds) Equal Tensile Capacity of Fastener (In.) 1/8" St. 1/8" Ai. 1/8" AI. A36 6063 T5 6063-T6 1201 1427 276 I 32R 414 I 492 1653 380 570 1879 432 648 2175 500 750 2719 625 938 3262 750 1125 3806 875 1313 4350 1000 1500 4894 1125 1688 5437 1250 1875 6525 1500 2250 7612 1750 2625 8700 2000 3000 14 A(S) = 0.7854(D - 0.9743; ll N TABLE 6 Allowable Shear Single Double (Pounds) (Pounds) 216 432 3,44 687 421 842 593 1186 T76 .' 1552 1300 2599 1937 3874 2663 5326 3580 7161 4611 9223 6259 12517 9013 18025 12267 24533 16022 32044 For Diameters up thru 9/16": A36 I 6063-TS 16063-T6 1 n M 1 11211 I 0154 1 I 0,128 I 0:280 I 0202 0.136 0.286 0.209 0.159 0.344 0.248 0.180 0.385 0.279 0.225 0.492 0.354 0.268 0.637 0.425 0.311 0.740 0.494 0.357 0.860 0.571 0.399 0.965 0.640 0.411 0.985 0.655 0.484 1.170 0.766 0.555 1.348 0.892 0.627 1.526 1.010 FI = 0.40F. Allowable tension - 0.40F [A(S)j 0 40 F = ✓- F. Allowable shear (Single) - 0.40 F [A(R)j 3 Minimum Material Thickness to Bearing (Pounds) Equal Tensile Capacity of Fastener (in.) 1/8" St. 1/8" Al. 1/8" Al. A36 6063-TS 6063-T6 1201 276 414 1427 328 492 1653 380 570 1879 432 648 2175 500 750 2719 625 938 3262 750 1125 3806 875 1313 4350 1000 1500 4894 1125 1688 5437 1250 1875 6525 1500 2250 7612 1750 2625 8700 2000 3000 A(R) = 0.7854rD - 1.2269? `` N A(S) = 0.7854(D - 0. N43� `` A36 6063-T6 0.144 0.231 0.188 0.308 0.195 0.313 0.232 0.377 0.261 0.422 0.330 0.539 0.396 0.651 0.460 0.756 0.532 0.878 0.596 0.986 0.732 1.220 0.867 1.452 0.998 1.674 1.129 1.894 F, = 0.40F„ Allowable tension - 0.40F„ [A(S)] 0 40 Fv = f F„ Allowable shear (Single) - 40 F [A(R)j For Diameters 5/8" and over: A(S) = 0.7858D2* *For fasteners 5/8" diameter and greater, values, formulas and procedures used are taken from the RISC, "Manual of Steel Construction," 9th Edition. (See page #24 for additional notes.) 25 :, PLATE CONNECTION TO CONCRETE ups —I 7 -'I. t.5In CONCRETE l� STEP ( $0 S x (� % n 3500 PSI Los Lo TI, '-1 e = 2 S in Tz. �3Z dos T 1333 �s fi �32 ��s T� = Ti t 12, Ta = (I 4 s GV� gq 4 c C^�,l caj-atO ° ✓` S : (4) bolt rt Z 2- LS 3I 8 x S t, n I Hilti PROFIS Engineering 3.0.68 www.hilti.com Company: Page: 1 Address: Specifier: Phone I Fax: E-Mail: Design: Concrete - Apr 7, 2021 Date: 4/7/2021 Fastening point: Specifier's comments: 1 Input data Anchor type and diameter: Item number: Effective embedment depth: Material: Evaluation Service Report: Issued I Valid: Proof: Stand-off installation: Anchor platen Profile: Base material: Reinforcement: Seismic loads (cat. C, D, E, or F) Nil Kwik Bolt TZ2 - CS 3/8 (2 1/2) hnom3 2210239 KB-TZ2 3/8x5 hef = 2.500 in., hn= = 3.000 in. Carbon Steel ESR-4266 12/1/2020 1 12/1/2021 Design Method ACI 318 / AC193 eb = 0.000 in. (no stand-off); t = 0.620 in. Ix x ly x t = 6.000 in. x 6.000 in. x 0.620 in.; (Recommended plate thickness: not calculated) Steel pipe, PIPE1-1/2XS; (L x W x T) = 1.900 in. x 1.900 in. x 0.200 in. cracked concrete, 3000, f� = 3,000 psi; h = 420.000 in. tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar no R - The anchor calculation is based on a rigid anchor plate assumption. Geometry [in.] & Loading [lb, in.Ib] Y X Input data and results must be checked for conformity with the existing conditions and for plausibility! PROMS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 1 10 Hilti PROFIS Engineering 3.0.68 www.hilti.com Company: Page: 2 Address: Specifier: Phone I Fax: E-Mail: Design: Concrete - Apr 7, 2021 Date: 4/7/2021 Fastening point: 1.1 Design results Case Description Forces [lb] / Moments [in.lb] Seismic Max. Util. Anchor [%] Combination 1 N = 1,765; Vx = 180; Vy = 0; no 39 Mx=0;My=0;MZ=0; Input data and results must be checked for conformity with the existing conditions and for plausibility! PROMS Engineering ( c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 112 Hilti PROFIS Engineering 3.0.68 www.hilti.com Company: Page: 3 Address: Specifier: Phone I Fax: E-Mail: Design: Concrete - Apr 7, 2021 Date: 4/7/2021 Fastening point: 2 Proof I Utilization (Governing Cases) Loading Proof Design values [lb] Utilization Load Capacity ON / (iv N Status Tension Concrete Breakout Failure 1,765 4,635 39 / - OK Shear Concrete edge failure in direction x+ 180 1,424 413 13 OK Loading PN Pv t Utilization PN,V N Status Combined tension and shear loads 0.381 0.126 5/3 24 OK 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! Input data and results must be checked for conformity with the existing conditions and for plausibility! PROMS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 3 12 Hilti PROFIS Engineering 3.0.68 www.hilti.com Company: Page: 4 Address: Specifier: Phone I Fax: E-Mail: Design: Concrete - Apr 7, 2021 Date: 4/7/2021 Fastening point: 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use -specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you. Input data and results must be checked for conformity with the existing conditions and for plausibility! PROMS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 4 13 KB-TZ2 Technical Guide Table 1B - Minimum edge distance, spacing and concrete thickness for KB-TZ2 Setting Nominal anchor diameter (in) information Symbol Units 1/4 3/8 1/2 5/8 3/4 Effective min. in. 1-1/2 1-1/2 2 2-1/2 1-1/2 2 2-1/2 3-1/4 2-3/4 3-1/4 4 3-1/4 3-3/4 4-3/4 embedment In of (mm) (38) (38) (51) (64) (38) (51) (64) (83) (70) (83) (102) (83) (95) (121) Min. member in. 3-1/4 3-1/4 4 5 3-1/2 4 5 5-1/2 5 5-1/2 6 5-1/2 6 8 thickness In m'" (mm) (83) (83) (102) (127) (89) (102) (127) (140) (127) (140) (152) (140) (152) (203) Carbon steel in. 1-1/2 5 2-1/2 2-1/2 8 2-3/4 2-3/4 2-1/4 4-1/2 3-1/2 2-3/4 5 4 3-1/2 Min. edge c mm (mm) (38) (127) (64) (64) (203) (70) (70) (57) (114) (89) (70) (127) (102) (89) distance in. 1-1/2 8 6 5 12 5-1/2 9-3/4 5-1/4 6-1/2 5-1/2 7-1/4 10 5-3/4 5-1/2 fors >- (mm) (38) (203) (152) (127) (305) (140) (248) (133) (165) (140) (184) (254) (146) (140) in. 1-1/2 5 2-1/4 2 12 3-1/2 3 2 4-1/2 2-3/4 2-1/4 4-1/2 3-3/4 3-3/4 Min. anchor s m° (mm) (38) (127) (57) (51) (305) (89) (76) (51) (114) (70) (57) (114) (95) (95) spacing In. 1-1/2 8 3-1/2 4 8 10 8 4-3/4 5-1/2 7 4-1/4 6 7-1/2 4-3/4 for c >_ (mm) 1 (38) 1 (203) 1 (89) 1 (102) 1 (203) 1 (254) 1 (203) 1 (121) 1 (140) 1 (178) 1 (108) 1 (152) 1 (191) 1 (121) Stainless steel in. 1-1/2 5 2-1/2 2-1/2 2-3/4 2-1/2 2-1/4 4 3-1/4 2-1/4 5 4 3-3/4 Min. edge c mm (mm) (38) (127) (64) (64) (70) (64) (57) (102) (83) (57) (127) (102) (95) distance in. 1-1/2 8 5 5 5-1/2 4-1/2 5-1/4 7 5-1/2 7 11 7-1/2 5-3/4 fors >- (mm) (38) (203) (127) (127) (140) (114) (133) (178) (140) (178) (279) (191) (146) in. 1-1/2 5 2-1/4 2-1/4 2-3/4 2-1/2 2 5-1/2 2-3/4 3 5 4 4 Min. anchor s. m° (mm) (38) (127) (57) (57) (70) (64) (51) (140) (70) (76) (127) (102) (102) spacing In. 1-1/2 8 4 3-1/2 4-1/8 5 4-3/4 5-1/2 4 4-1/4 8 6 5-1/4 fort >_ (mm) 1 (38) 1 (203) 1 (102) 1 (89) 1 1 (105) 1 (127) 1 (121) 1 (140) 1 (102) 1 (108) 1 (203) 1 (152) 1 (133) For SI: 1 inch = 25.4 mm s c i y ZT C .0 C Q cmin at s N $ ---------------- h - hmin smin atc>_ i i c edge distance (c) Figure 4 — Interpolation of minimum edge distance and anchor spacing 14 April 2021 3 GLASS CLAMP RAILING TOP MOUNT PERFORMANCE TABLE Allowable Tension Loads' for Threaded Rod Installed in • • - • Solid Concrete THREADED MIN. ALLOWABLE TENSION LOAD BASED ALLOWABLE TENSION LOAD BASED ROD DIA. EMBEDMENT ON EPDXY BOND STRENGTH ON STEEL STRENGTH 2O00 PSI (13.8 MPa) 4000 PSI (27.6 MPa) ASTM A307 ASTM A193 GR. B7 ASTM F593 In. (mm) DEPTH In. (mm) CONCRETE CONCRETE (SAE 1018) (SAE 4140) AISI 304 SS Lbs.(kN) Lbs.(kN) Lbs.(kN) Lbs.(kN) Lbs.(kN) 3/8 (9.5) 3-3/8 (85.7) 1,265 (5.6) 2,092 (9.3) 2,080 (9.3) 4,340 (19.3) 3,995 (17.8) 4-1/2 (114.3) 1,616 (7.2) 2,622 (11.7) 2,080 (9.3) 4,340 (19.3) 3,995 (17.8) 1/2 (12.7) 4-1/2 (114.3) 3,004 (13.4) 3,369 (1S.0) 3,730 (16.6) 7,780 (34.6) 7,155 (31.8) 6 (152.4) 3,098 (13.8) 4,791 (21.3) 3,730 (16.6) 7,780 (34.6) 7,155 (31.8) 5/8 (15.9) 5-5/8 (142.9) 3,659 (16.3) 5,220 (23.2) 5,870 (26.1) 12,230 (54.4) 11,250 (50.0) 7-1/2 (190.5) 5,046 (22.4) 6,985 (31.1) ,870 (26.1) 12,230 (54.4) 11,250 (50.0) 3/4 (19.1) 6-3/4 (171.S) 4,742 (21.1) 7,255 (32.3) 8,4 0 (37.8) 17,690 (78.7) 14,860 (66.1) 9 (228.6) 6,497 (28.9) 10,057 (44.7) 8,490 (37.8) 17,690 (78.7) 14,860 (66.1) 1 (25.4) 9 (228.6) 10,951 (48.7) 11,209 (49.9) 15,180 7.5) 31,620 (140.6) 26,560 (118.1) 12 (304.8) 11,338 (50.4) 15,923 (70.8) 15,180 (67. ) 31,620 (140.6) 26,560 (118.1) 1 Use lower value of either 2 Linear interpolation may bond or steel strength for allowable be used for intermediate spacing tensile load. and edge distances. 3 186 Lbs X 0.70 = 223U Lb$ (2" Min. edge distance for 3000 PSI concrete) PERFORMANCE TABLE - Allowable Shear Loads',2 for Threaded Rod Installed in qROD • • Solid Concrete P MIN. ALLOWABLE SHEAR LOAD BASED ALLOWABLE SHEAR LOAD BASED EMBEDMENT ON CONCRETE STRENGTH ON STEEL STRENGTH In. (mm) DEPTH 2O00 PSI (13.8 MPa) 4000 PSI (27.6 MPa) ASTM A307 ASTM A193 GR. B7 ASTM F593 In. (mm) CONCRETE CONCRETE (SAE1018) (SAE4140) AISI304SS Lbs.(kN) Lbs.(kN) Lbs.(kN) Lbs.(kN) Lbs.(kN) 3/8 (9.5) 3-3/8 (85.7) 1,557 (6.9) 1,557 (6.9) 1,040 (4.6) 2,170 (9.7) 1,995 (8.9) 112 (12.7) 4-1/2 (114.3) 3,004 (13.4) 3,004 (13.4) 1,870 (8.3) 3,895 (17.3) 3,585 (15.9) S/8 (15.9) S-5/8 (142.9) 4,387 (19.S) 4,387 (19.5) 2,940 (13.1) 6,125 (27.2) 5,635 (25.1) 3/4 (19.1) 6-3/4 (171.5) 6,230 (27.7) 6,230 (27.7) 4,250 (18.9) 8,855 (39.4) 7,440 (33.1) 1 (25.4) 9 (228.6) 10,912 (48.5) 10,912 (48.5) 7,590 (33.8) 15,810 (70.3) 13,285 (59.1) 1 Use lower value ofeither concrete or steel strength for allowable shear load. 2 Linear interpolation may be used for intermediate spacing and edge distances. (See page 49) 3,004 Lbs x 0.30 = 901 Lbs (2" Min Edge distance for 3000 PSI concre... Combined Tension and Shear Loading -for G5 Adhesive Anchors Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100%tension or 100%shear. Use the following equation to evaluate anchors in combined loading conditions: CNW)+ (Va) 1 No = Applied Service Tension Load Va= Applied Service Shear Load s Vs Ns = Allowable Tension Load Vs = Allowable Shear Load 16 PERFORMANCE TABLE Average Ultimate Tension Loads1,2,3 for Reinforcing Bar Installed in Solid Concrete REINFORCING EMBEDMENT 2000 PSI (13.8 MPa) 4000 PSI (27.6 MPa) ULTIMATE TENSILE AND YIELD STRENGTH BAR IN CONCRETE IN CONCRETE IN CONCRETE GRADE 6DREBAR MINIMUMYIELD MINIMUM ULTIMATE In. (mm) In.(mm) ULTIMATE TENSION ULTIMATE TENSION Lbs.(kN) Lbs.(kN) STRENGTH TENSILE STRENGTH Lbs.(kN) Lbs.(kN) #3 (9.5) 3-3/8 (85.7) 7,480 (33.3) 8,090 (35.9) 6,600 (29.4) 9,900 (44.0) 4-1/2 (114.3) N/A 10,488 (46.6) 6,600 (29.4) 9,900 (44.0) #4 (12.7) 4-1/2 (114.3) N/A 14,471 (64.4) 12,000 (53.4) 18,000 (80.1) 6 (152.4) 11,235 (50.0) 20,396 (90.7) 12,000 (53.4) 18,000 (80.1) #5 (15.9) 5-5/8 (142.9) N/A 21,273 (94.6) 18,600 (82.7) 27,900 (124.1) 7-1/2 (190.5) 18,108 (80.6) 31,863 (141.7) 18,600 (82.7) 27,900 (124.1) #6 (19.1) 6-3/4 (171.5) N/A 27,677 (123.1) 26,400 (117.4) 39,600 (176.2) 9 (228.6) 29,338 (130.5) 47,879 (212.9) 26,400 (117.4) 39,600 (176.2) #7 (22.2) 7-7/8 (200.0) N/A 43,905 (195.3) 36,000 (160.1) 54,000 (240.2) 10-112 (266.7) N/A 52,046 (231.5) 36,000 (160.1) 54,000 (240.2) #8 (25.4) 9 (228.6) N/A 55,676 (247.7) 47,400 (210.9) 71,100 (316.3) 12 (304.8) 48,000 (213.5) 77,358 (344.1) 47,400 (210.9) 71,100 (316.3) #9 (28.6) 10-1/8 (257.2) N/A 62,443 (277.8) 60,000 (266.9) 90,000 (400.4) 13-1/2 (342.9) N/A 71,959 (320.1) 60,000 (266.9) 90,000 (400.4) # 10 (31.8) 11-1/4 (285.8) N/A 70,165 (312.1) 76,200 (339.0) 114,300 (508.5) 15 (381.0) N/A 78,545 (349.4) 76,200 (339.0) 114,300 (508.5) 1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod. 2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension and shear loads. 3 SHEAR DATA: Provided the distance from the rebarto the edge ofthe concrete member exceeds 1.25 times the embedment depth ofthe rebar, calculate the ultimate shear load for the rebar anchorage as 60% ofthe ultimate tensile strength ofthe rebar. Average Ultimate Tension Loadsl,2 for Threaded Rod - . - Installed in Solid Concrete THREADED HOLE EMBEDMENT >_ 3000 PSI (13.8 MPa) ROD DIAMETER IN CONCRETE IN CONCRETE In. (mm) In. (mm) In. (mm) ULTIMATE TENSION Lbs.(kN) 1-1/2 (38.1) 1-3/4 (44.5) 13 (330.2) 100,250 (490.4) 17 (431.8) 143,600 (638.8) 19 (482.6) 150,000 (667.3) 2 (50.8) 2-1/4 (57.2) 16 (406.4) 150,000 (667.3) 17 (431.8) 169,700 (754.9) 1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load ofthe anchor rod. 2 Ultimate load values are>_ 3000 psi in stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. 37). The use of lower strength rods will result in lower ultimate tension loads. See chart below. G5 Adhesive Edge/Spacing Distance Load Factor Summary for Installation of Threaded Rod and Reinforcing Bar',Z LOAD FACTOR Critical Edge Distance -Tension 100% Tension Load - Minimum Edge Distance -Tension 70%Tension Load - Critical Edge Distance -Shear 100% Shear Load Minimum Edge Distance -Shear 30% Shear Load - LOAD FACTOR Critical Spacing -Tension 100% Tension Load Minimum Spacing -Tension 75%Tension Load Critical Spacing -Shear 100% Shear Load Minimum Spacing -Shear 30% Shear Load DISTANCE FROM EDGE OF CONCRETE 1.25 x Anchor Embedment 0.50 x Anchor Embedment 1.25 x Anchor Embedment 0.30 x Anchor Embedment DISTANCE FROM ANOTHER ANCHOR o 1.50 x Anchor Embedment 0.75 x Anchor Embedment 1.50 x Anchor Embedment jo 0.50 x Anchor Embedment 1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum. 2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction ofthe loading. Use the product oftension and shear loading factors in design. 17 BAR AND TUBE INFILLS RAILINGS TOP MOUNT GEOMETRIC PROPERTIES HANDRAIL MODEL 0900 - 0 1.9" 316 SS Section Properties Area-Sq In 0.9121 Perimeter Ins 23.3860 Wt/Ft-Lbs 1.0489 Ix-In4 1.5801 Sx-In3 0.8316 Rx-In 1.3162 Iy-In4 1.5801 Sy-In3 0.8316 Ry-In 1.3162 BALUSTER POST MODEL 0916 - 01.9" 316 SS Section Properties Area-Sq In 1.7859 Perimeter Ins 22.8959 Wt/Ft-Lbs 2.0538 Ix-In4 2.9697 Sx-In3 1.5630 Rx-In 1.2895 Iy-In4 2.9697 Sy-In3 1.5630 Ry-In 1.2895 CROSSBAR TUBE MODEL 0900 - 01/2" 316 SS Section Properties Area-Sq In 7.0686 Perimeter Ins 9.4248 WVFt-Lbs 8.1289 Ix-In4 3.9761 Sx-In3 2.6507 Rx-In 0.7500 Iy-In4 3.9761 Sy-In3 2.6507 0 Ry-In 0.7500 20 Project Name: 4410 N HWY Al A, FORT PIERCE, FL 34949 Date:04/01/2021 Picket Horizontal Railing Design (Top, Bottom, Post Allowable Stresses for Aluminum 6063-T6 6063-T5 6061-T6 6005-T5 (psi) (psi) (psi) (psi) Fb 15000 9500 19000 19000 (Tubes & Shapes) 4800 4800 9000 8000 Fb 18000 11500 24000 24000 (Round & Oval) 5500 5500 10500 9000 Fv 8500 5500 12000 12000 Tubes, Shapes & Round 2800 2800 5000 4500 E 1 10100 ksi 10100 ksi 10100 ksi 10100 ksi White bars apply to nonwelded members and to welded members at loc. fathers than 1.0 in from a weld Shadded bars apply to within 1.0 in of a weld Allowable Stress for Aluminum Welding: Aluminum Filler Alloy 5356 Fv=7000 psi Allowable Stress for Steel Strong and Weak Axis Allowables Stress for Tube Steel Shape: Fb=23760 psi, Fv=14400 psi for Fy=36 ksi E=29000 Ksi Fb=33000 psi, Fv=20000 psi for Fy=50 ksi E=29000 Ks Allowable Stress for Steel Welding: Welding: E-70XX Fv=-21000 psi Allowable Stress for Stainless Steel Strong and Weak Axis Allowables Stress for Tube Steel Shape: Fb=16216 psi, Fv=9189 psi for (SS 304) Fy=30 ksi E=28000 Ksi Fb=34730 psi, Fv=20838 psi for (S32304 Duplex SS) Fy=58 ksi E=28000 Ksi Fb=62870 psi, Fv=37720 psi for (S17400-H1150) Fy=105 ksi E=28000 Ksi Allowable Stress for Steel Welding: Welding: E318 or E309 Fv=19200 psi Allowable Stress for Wood Strong and Weak Axis Allowables Stress for Lumber No.2 Non Dense (2"-4" thick): Fb=1350 psi, Fv=175 psi for 2"-4" Wide E=1400 Ksi Fb=1150 psi, Fv=175 psi for 5"-6" Wide E=1400 Ksi DESIGN INFORMATION: 2020 Florida Building Code 7th Edition AISC Manual of Steel Construction 15th Ed, NDS-ASD for Wood Construction 2018, ASCE 27-13 Structural Stainless Steel, Aluminum Design Manual 2015 DESIGN LOADS: Handrail Design Loads: Concentrated Load = 200 lbs. applied at any point in any direction. Uniform Load = 50 plf applied in any direction (other than dwelling units). Guardrail System Loads: Concentrated Load = 200 lbs. applied at any point in any direction at the top of the guardrail (other than dwelling units include a load of 100 lbs applied vertically downward at the top of guardrail). Concentrated horizontal load of 200 lbs applied on a 1 sq ft. area at any point in the system. 21 Handrail Design: veKv a� _aa_a o- --anta� Laad i i�aat �L L -� eneral Data: Railing Span (in) Hpost := 42.0 Post Height (in) dpieket:= 4.0 Distance center/center of Picket (in) eneral Loads: q,,i d:= 45.63 Wind Pressure (psf) P200:= 200.0 Single Concentrated Load (Ibs) .....Railing P=200.00, Fence P=0.00 qso:= 50.0 Uniform Distributed Load (plf)......... Railing q=50.00, Fence q=0.00 Pso:= 50.0 Single Concentrated Load (Ibs) .....Railing P=50.00, Fence P=0.00 op Railing Data: I IPost Data: I IPicket Data: FbTR := 34730.0 psi FbPT := 34730.00 psi FbPK := 34730.00 psi FVTR:= 2083 O psi FvPT:= 20838.00psi FvPK:= 20838.00psi SxTR:= 0.831 Vertical Loads in SxPT:= 1.563 in3 SxPK:= 2.650 in3 SyTR:= 0.831 Horizontal Loads in APT:= 1.785 in APK:= 7.068 in ATR : = 0.9121 in 22 op Railing Design: ctual Moment: Concentrated Load = 200 lbs. P2oo' L MTR.200: = 5 MTR.200 = 1920.00 in — lb Uniform Load = 50 nlf (12) MTR.50 0.1012• q50 1 L2 MTR.50 = 971.52 in — lb For Wind Pressure tlwind dpicket 2 MTR.wind 0.1012 144 2 L MTR.wind = 147.77 in — lb MTR := max(MTR.200, MTR.50, MTR.wind) MTR = 1920.00 in — lb ctual Shear: Concentrated Load = 200 lbs. VTR.200 P20dbs VTR.200 = 200.00 Ibs Uniform Load = 50 plf50 r VTR.50.= 0.6• I 112)). L IVTR.50 = 120.00 Ibs For Wind Pressure gwind dpicket VTR.wind.— 0•6 144 J 2 L VTR.wind = 18.25 Ibs VTR:= Max VTR.200, VTR.50, VTR.wind) VTR = 200.00 Ibs ection Required: Bending Design: Section Modulus Required MTR STR.min STR.min = 0•06 in3 FbTR Shear Design: Area Required 1.5• VTR ATR.min ATR.min = 0•01 in2 FVTR ection Provided: BENDINGtop:= if(STR.min min(SxTR, SYTR), "N.G" , "OK"� BENDINGtop = "OK" SHEARtop:= if(ATR.min ATR, "N.G" , "OK") SHEARtnp = "OK" 23 Post Design: ctual Reaction: Concentrated Load = 200 lbs. RPT.200 : = P200 Uniform Load = 50 plf q50 1 RPT.50 1.1 12 L For Wind Pressure gwind I RPT.wind : = 1.1 - ( 144 Hpost- L RPT := max(RPT.200, RPT.50, RPT.wind) RPT.200 = 200.00 Ibs RPT.50 = 220.00 Ibs RPT.wind = 702.70 Ibs RPT = 702.70 Ibs ctua I Moment: M max(max(R R ) H R H2 M 14756.74 in - lb PT �= PT.200� PT.50 ' post> PT.wind' 2 � PT = ctual Shear: VPT:= RPT VPT = 702.70 Ibs. ection Required: Bending Design: Section Modulus Required: MPT 3 SPT.min:= SPT.min = 0.42 in FbPT Shear Design: Area Required: 1.5• VPT 2 APT.min:= APT.min = 0.05 1 in FvPT ection Provided: BENDING post:= if(SPT.min > SxpT, "N.G" , "OK") BENDINGpost = "OK" SHEARpost := if(APT.min > APT, "N.G" , "OK") SHEARpost = "OK" 24 L Picket Design: i ,,,, ,.i o,a ore„ 1 ft^Z 7 3.000 3.000 cable H.post 1-3 0000 Assume three pickets acting simultaneously P50 1 lbs Wpicket:= 12 ' 3 Wpicket = 1 .39 in gpicket:= max(25.00, q,ind) gpicket = 45.63 psf L2 MpK:= max 6• Wpicket' — Wpicket' 18, %ick f dpic of J MpK = 365.04 in -lb 2 (L, — 6) gpickef dpickef Li� Vpg:= ma 12• Wpicket' L � 144.2 VPK = 30.42 Ib ection Required: Bending Design: Section Modulus Required SPK.min MpK SPK.min = 0.011 in3 FbPK Shear Design: Area Required: APK.min : = 1.5• VpK APK.min = 0.002 Inz FVPK ection Provided: BENDINGpicket:= if(SPK.n i„ >_ SxpK, "N.G" , "OK"� BENDINGpicket = "OK" SHEARpicket if(APK.min > APK, "N.G" , "OK") SHEARpicket = "OK" 25 PERFORMANCE TABLE Allowable Tension Loads' for Threaded Rod Installed in • • - • Solid Concrete THREADED MIN. ALLOWABLE TENSION LOAD BASED ALLOWABLE TENSION LOAD BASED ROD DIA. EMBEDMENT ON EPDXY BOND STRENGTH ON STEEL STRENGTH 2O00 PSI (13.8 MPa) 4000 PSI (27.6 MPa) ASTM A307 ASTM A193 GR. B7 ASTM F593 In. (mm) DEPTH In. (mm) CONCRETE CONCRETE (SAE 1018) (SAE 4140) AISI 304 SS Lbs.(kN) Lbs.(kN) Lbs.(kN) Lbs.(kN) Lbs.(kN) 3/8 (9.5) 3-3/8 (85.7) 1,265 (5.6) 2,092 (9.3) 2,080 (9.3) 4,340 (19.3) 3,995 (17.8) 4-1/2 (114.3) 1,616 (7.2) 2,622 (11.7) 2,080 (9.3) 4,340 (19.3) 3,995 (17.8) 1/2 (12.7) 4-1/2 (114.3) 3,004 (13.4) 3,369 (1S.0) 3,730 (16.6) 7,780 (34.6) 7,155 (31.8) 6 (152.4) 3,098 (13.8) 4,791 (21.3) 3,730 (16.6) 7,780 (34.6) 7,155 (31.8) 5/8 (15.9) 5-5/8 (142.9) 3,659 (16.3) 5,220 (23.2) 5,870 (26.1) 12,230 (54.4) 11,250 (50.0) 7-1/2 (190.5) 5,046 (22.4) 6,985 (31.1) ,870 (26.1) 12,230 (54.4) 11,250 (50.0) 3/4 (19.1) 6-3/4 (171.S) 4,742 (21.1) 7,255 (32.3) 8,4 0 (37.8) 17,690 (78.7) 14,860 (66.1) 9 (228.6) 6,497 (28.9) 10,057 (44.7) 8,490 (37.8) 17,690 (78.7) 14,860 (66.1) 1 (25.4) 9 (228.6) 10,951 (48.7) 11,209 (49.9) 15,180 7.5) 31,620 (140.6) 26,560 (118.1) 12 (304.8) 11,338 (50.4) 15,923 (70.8) 15,180 (67. ) 31,620 (140.6) 26,560 (118.1) 1 Use lower value of either 2 Linear interpolation may bond or steel strength for allowable be used for intermediate spacing tensile load. and edge distances. 3 186 Lbs X U.7U = 223U Lb$ (2" Min. edge distance for 3000 PSI concrete) PERFORMANCE TABLE - Allowable Shear Loads',2 for Threaded Rod Installed in qROD • • Solid Concrete P MIN. ALLOWABLE SHEAR LOAD BASED ALLOWABLE SHEAR LOAD BASED EMBEDMENT ON CONCRETE STRENGTH ON STEEL STRENGTH In. (mm) DEPTH 2O00 PSI (13.8 MPa) 4000 PSI (27.6 MPa) ASTM A307 ASTM A193 GR. B7 ASTM F593 In. (mm) CONCRETE CONCRETE (SAE1018) (SAE4140) AISI304SS Lbs.(kN) Lbs.(kN) Lbs.(kN) Lbs.(kN) Lbs.(kN) 3/8 (9.5) 3-3/8 (85.7) 1,557 (6.9) 1,557 (6.9) 1,040 (4.6) 2,170 (9.7) 1,995 (8.9) 112 (12.7) 4-1/2 (114.3) 3,004 (13.4) 3,004 (13.4) 1,870 (8.3) 3,895 (17.3) 3,585 (15.9) S/8 (15.9) S-5/8 (142.9) 4,387 (19.S) 4,387 (19.5) 2,940 (13.1) 6,125 (27.2) 5,635 (25.1) 3/4 (19.1) 6-3/4 (171.5) 6,230 (27.7) 6,230 (27.7) 4,250 (18.9) 8,855 (39.4) 7,440 (33.1) 1 (25.4) 9 (228.6) 10,912 (48.5) 10,912 (48.5) 7,590 (33.8) 15,810 (70.3) 13,285 (59.1) 1 Use lower value ofeither concrete or steel strength for allowable shear load. 2 Linear interpolation may be used for intermediate spacing and edge distances. (See page 49) 1,557 Lbs x 0.30 = 467 Lbs (2" Min Edge distance for 3000 PSI Combined Tension and Shear Loading -for G5 Adhesive Anchors Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100%tension or 100%shear. Use the following equation to evaluate anchors in combined loading conditions: CNW)+ (Va) 1 No = Applied Service Tension Load Va= Applied Service Shear Load s Vs Ns = Allowable Tension Load Vs = Allowable Shear Load 26 PERFORMANCE TABLE Average Ultimate Tension Loads1,2,3 for Reinforcing Bar Installed in Solid Concrete REINFORCING EMBEDMENT 2000 PSI (13.8 MPa) 4000 PSI (27.6 MPa) ULTIMATE TENSILE AND YIELD STRENGTH BAR IN CONCRETE IN CONCRETE IN CONCRETE GRADE 6DREBAR MINIMUMYIELD MINIMUM ULTIMATE In. (mm) In.(mm) ULTIMATE TENSION ULTIMATE TENSION Lbs.(kN) Lbs.(kN) STRENGTH TENSILE STRENGTH Lbs.(kN) Lbs.(kN) #3 (9.5) 3-3/8 (85.7) 7,480 (33.3) 8,090 (35.9) 6,600 (29.4) 9,900 (44.0) 4-1/2 (114.3) N/A 10,488 (46.6) 6,600 (29.4) 9,900 (44.0) #4 (12.7) 4-1/2 (114.3) N/A 14,471 (64.4) 12,000 (53.4) 18,000 (80.1) 6 (152.4) 11,235 (50.0) 20,396 (90.7) 12,000 (53.4) 18,000 (80.1) #5 (15.9) 5-5/8 (142.9) N/A 21,273 (94.6) 18,600 (82.7) 27,900 (124.1) 7-1/2 (190.5) 18,108 (80.6) 31,863 (141.7) 18,600 (82.7) 27,900 (124.1) #6 (19.1) 6-3/4 (171.5) N/A 27,677 (123.1) 26,400 (117.4) 39,600 (176.2) 9 (228.6) 29,338 (130.5) 47,879 (212.9) 26,400 (117.4) 39,600 (176.2) #7 (22.2) 7-7/8 (200.0) N/A 43,905 (195.3) 36,000 (160.1) 54,000 (240.2) 10-112 (266.7) N/A 52,046 (231.5) 36,000 (160.1) 54,000 (240.2) #8 (25.4) 9 (228.6) N/A 55,676 (247.7) 47,400 (210.9) 71,100 (316.3) 12 (304.8) 48,000 (213.5) 77,358 (344.1) 47,400 (210.9) 71,100 (316.3) #9 (28.6) 10-1/8 (257.2) N/A 62,443 (277.8) 60,000 (266.9) 90,000 (400.4) 13-1/2 (342.9) N/A 71,959 (320.1) 60,000 (266.9) 90,000 (400.4) # 10 (31.8) 11-1/4 (285.8) N/A 70,165 (312.1) 76,200 (339.0) 114,300 (508.5) 15 (381.0) N/A 78,545 (349.4) 76,200 (339.0) 114,300 (508.5) 1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod. 2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension and shear loads. 3 SHEAR DATA: Provided the distance from the rebarto the edge ofthe concrete member exceeds 1.25 times the embedment depth ofthe rebar, calculate the ultimate shear load for the rebar anchorage as 60% ofthe ultimate tensile strength ofthe rebar. Average Ultimate Tension Loadsl,2 for Threaded Rod - . - Installed in Solid Concrete THREADED HOLE EMBEDMENT >_ 3000 PSI (13.8 MPa) ROD DIAMETER IN CONCRETE IN CONCRETE In. (mm) In. (mm) In. (mm) ULTIMATE TENSION Lbs.(kN) 1-1/2 (38.1) 1-3/4 (44.5) 13 (330.2) 100,250 (490.4) 17 (431.8) 143,600 (638.8) 19 (482.6) 150,000 (667.3) 2 (50.8) 2-1/4 (57.2) 16 (406.4) 150,000 (667.3) 17 (431.8) 169,700 (754.9) 1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load ofthe anchor rod. 2 Ultimate load values are>_ 3000 psi in stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. 37). The use of lower strength rods will result in lower ultimate tension loads. See chart below. G5 Adhesive Edge/Spacing Distance Load Factor Summary for Installation of Threaded Rod and Reinforcing Bar',Z LOAD FACTOR Critical Edge Distance -Tension 100% Tension Load - Minimum Edge Distance -Tension 70%Tension Load - Critical Edge Distance -Shear 100% Shear Load Minimum Edge Distance -Shear 30% Shear Load - LOAD FACTOR Critical Spacing -Tension 100% Tension Load Minimum Spacing -Tension 75%Tension Load Critical Spacing -Shear 100% Shear Load Minimum Spacing -Shear 30% Shear Load DISTANCE FROM EDGE OF CONCRETE 1.25 x Anchor Embedment 0.50 x Anchor Embedment 1.25 x Anchor Embedment 0.30 x Anchor Embedment DISTANCE FROM ANOTHER ANCHOR o 1.50 x Anchor Embedment 0.75 x Anchor Embedment 1.50 x Anchor Embedment jo 0.50 x Anchor Embedment 1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum. 2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction ofthe loading. Use the product oftension and shear loading factors in design. 27