Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutREVISIONS, FINAL CALCULATIONS 4410 4.12.21(rD
G&D BUILDING
SOLUTIONS
NEW RAILINGS FOR
SION HOMES
4410 N HWY Al A
FORT PIERCE, FL 34949
RAILINGS
SHOP DRAWINGS
STRUCTURAL CALCULATIONS
y„FER..q. Digitally signed
:�OP••�,O ENS., P`'4by Danay
'
No 77142 .: Fernandez
:�= Date:
:9•, STATE OF
2021.04.08
13:52:11-04'00'
Designed by:
Danay Fernandez, P.E.
Lic. No. 77142
1
G&D BUILDING
(rD SOLUTIONS
PROJECT NAME: INTERIOR & EXTERIOR RAILINGS FOR:
SION HOMES
ADDRESS: 4410 N HWY A1A, FORT PIERCE, FL 34949
Design Criteria: Calculations based on:
1. 2020 Florida Building Code — 7th EDITION
2. Minimum Design Loads for Buildings and other Structures ASCE 7-16
3. Building Code Requirements for Structural Concrete ACI 318-08
4. American Institute of Steel Construction AISC-15 Edition
5. Specifications for the Design of Cold -Formed Stainless Steel Structural Members
SEI/ASCE8-02
CALCULATION INDEX:
I. Cover Page...................................................................1
II. Index...........................................................................2
III. Wind Analysis................................................................3-5
IV. Glass Clamp Railing Fascia Mount....................................6-14
V. Glass Clamp Railing Top Mount.........................................15-17
VI. Bar and Tube Infills Railing Top Mount..............................18-27
This computation book contains manual and computerized structural calculations, pages are
numbered 1 thru 27 including this page.
Computations were performed to the best of my knowledge according to sound and generally
accepted engineering principals and code requirements.
The sign and seal provided herein are meant to cover all computation sheets pages 1 through
27.
�Py `FERNgtio Digitally Signed
�` P:•'GENS' F•
Sincerely, . x"°Fernandez
o, IT— of � Date:
2021.04.08
°S%oNP 14:44:25-04'00'
Danay Fernandez, PE
FL Reg. PE No. 77142
ENGINEERS & GENERAL CONTRACTORS
1310 NW 67th Ter. Hollywood, FL 33024 1 PE 77142 1 CGC 1514512 1 CCC 1328768
305.773.7973 1 projects@gdbuildingsolutions.com I gdbuild ingsolutions.com
2
WIND ANALYSIS
MecaWind v2318
Software Developer: Meca Enterprises Inc., www.meca.biz, Copyrignt - 20ib
Calculations Prepared by:
Date: Apr 06, 2021
File Location:
\\GUIDOHOMESERVER\GDBuildingSolutions\2021 JOBS\ARMANDO REYES\CALCULATION\
GLASS WIND CALCULATION.wnd
Basic Wind
Parameters
Wind Load Standard
= ASCE 7-16
Exposure Category
= D
Wind Design
Speed = 170.0 mph
Risk Category
= III
Structure Type = Building
Building Type
= Enclosed
General Wind Settings
=
ASCE 7-16 Wind Parameters
=
Incl_LF =
Include ASD Load Factor of 0.6
in Pressures
= True
DynType =
Dynamic Type of Structure
= Rigid
NF =
Natural Frequency of Structure
(Mode 1)
= 1.000
Hz
NF =
Natural Frequency of Structure
= 1.000
Hz
Zg =
Altitude (Ground Elevation) above
Sea Level
= 0.000
ft
Bdist =
Base Elevation of Structure
= 0.000
ft
GenElev =
Specify the Elevations For Wind
Pressures
= Mean Roof Ht
SDB =
Simple Diaphragm Building
= False
MWFRS =
Analysis Procedure being used
for MWFRS
= Ch 27
Pt 1
C&C =
Analysis Procedure being used
for C&C
= Ch 30
Pt 1
MWFRSType =
MWFRS Method Selected
= Ch 27
Pt 1
Topographic
Factor per Fig 26.8-1
Topo =
Topographic Feature
= None
Kzt =
Topographic Factor
= 1.000
Building Inputs
RoofType:
Building Roof Type
= Hipped
Hipped
=
W
Width Perp to Ridge
= 64.000 ft
L
Length Along Ridge
= 73.000 ft
EHt
Eave Height
= 37.000 ft
Hip
Ridge Hipped Length
= 15.000 ft
RE
Roof Entry Method
= Slope
Slope
Slope of Roof
= 4.0 :12
OH
Specify Roof to Wall
intersection
and Overhang=
Sofit Theta
Roof Slope
Par
Is there a Parapet
= False
OH ALL
: Sofit
= 2.000 ft
Exposure Constants per Table 26.11-1:
Alpha:
Const from Table
26.11-1= 11.500
Zg:
Const
from
Table
26.11-1=
700.000 ft
At:
Const from Table
26.11-1= 0.087
Bt:
Const
from
Table
26.11-1=
1.070
Am:
Const from Table
26.11-1= 0.111
Bm:
Const
from
Table
26.11-1=
0.800
C:
Const from Table
26.11-1= 0.150
Eps:
Const
from
Table
26.11-1=
0.125
Overhang Inputs:
Std
= Overhangs on
all sides are the
same
=
True
OHType
= Type of Roof Wall Intersections
=
Sofit
OH
= Overhang of
Roof Beyond Wall
=
2.000 ft
Gust Factor Calculation:
Gust Factor Category I Rigid Structures - Simplified Method
G1 = For Rigid Structures (Nat. Freq.>1 Hz) use 0.85 = 0.85
Gust Factor Category II Rigid Structures - Complete Analysis
Zm = 0.6 * Ht = 25.400 ft
Izm = Cc * (33 / Zm) 0.167 = 0.157
Lzm = L * (Zm / 33) Epsilon = 629.076
Q = (1 / (1 + 0.63 * ((B + Ht) / Lzm)^0.63))^0.5 = 0.911
G2 = 0.925*((1+1.7*lzm*3.4*Q)/(1+1.7*3.4*lzm)) = 0.886
Gust Factor Used in Analysis
G = Lessor Of G1 Or G2 = 0.850
Components and Cladding (C&C) Calculations per Ch 30 Part 1:
� � d
3 ® 3
©i 1 z� z� �, i ae 5. Roof not Shown
I I :5
4 4 ,
0
= 18.43 Deg
OO Walls S 5
_t----�- 4 LEI
ca 3 2e 3 a a
lal PLAN
h = Mean Roof Height above grade = 42.333 ft
Kh = 15 ft [4.572 m]< Z <Zg-->(2.01*(Z/zg)^(2/Alpha) {Table 26.10-11= 1.234
Kzt = Topographic Factor is 1 since no Topographic feature specified = 1.000
Kd = Wind Directionality Factor per Table 26.6-1 = 0.85
GCPi = Ref Table 26.13-1 for Enclosed Building = +/-0.18
LF = Load Factor based upon ASD Design = 0.60
qh = (0.00256 * Kh * Kzt * Kd * Ke * V^2) * LF = 46.56 psf
LHD = Least Horizontal Dimension: Min(B, L) = 64.000 ft
a1 = Min(0.1 * LHD, 0.4 * h = 6.400 ft
a = Max(al, 0.04 * LHD, 3 ft [0.9 m]) = 6.400 ft
h/B = Ratio of mean roof height to least hor dim: h / B = 0.661
Wind Pressures for C&C Ch 30 Pt 1
All wind pressures include a load factor of 0.6
Description Zone Width Span Area 1/3 Ref GCp GCp p p
Rule Fig Max Min Max Min
ft ft ft sq ft psf psf
------------- ---- ------ ------------- ---- ------ ----- ------ ----- ------
BALCONY GLASS 4 48.000 36.000 1728.00 No 30.3-1 0.700 -0.800 40.97 -45.63
Area = Span Length x Effective Width
1/3 Rule = Effective width need not be less than 1/3 of the span length
GCp = External Pressure Coefficients taken from Figures 30.3-1 through 30.3-7
p = Wind Pressure: qh*(GCp - GCpi) [Eqn 30.3-1]*
*Per Para 30.2.2 the Minimum Pressure for C&C is 9.60 psf [0.460 kPa] {Includes LF]
N1
GLASS CLAMP RAILING
FASCIA MOUNT
BRACKET CONNECTION TO PLATE
200
"s
4o'n
ULs z
0
.�-�-d bra, sties
v_ W S Y. W x CONCRETE
v STEP i
3500 PSI
Tt
U: Igo .1.(05
�Ss � rn�- `ocu rS °�.
IoR�.t�1SVARIES
MAX 5"��,/ z jo LLs �,r +i-r�
/2,.:
i� = 8000 �r -in T, V�, / a = goo 4/006 "s - I n 3 � n - �+ � (0 7 Lovp � I 4-6-s /Z - S
4,S33 �kr
"s + 1
T v
L 333 VoS +� S
l'15 LLs
7
19. FASTENER LOAD TABLES
B. Unified Coarse Threads
TABLE 5
Nominal
Thread
Diameter &
Thread/Inch
#6-32
#1-32
# 10-24
# 12-24
1/4-20
5/16-18
3/8-16
7/16-14
1/2-13
9/16-12
5/8-11
3/4-10
718-9
1-8
Nominal
Thread
Diameter &
Thread/inch
#6-32
#8-32
# 10-24
# 12-24
1/4-20
5/16-18
3/8-16
7/16-14
1 /2-13
9116-12
5/8-11
3/4-10
7/8-9
1-8
D
Nominal
Thread
Diameter
(inch)
0.A-
0.1640
0.1900
0.2160
0.2500
0.3125
0.3750
0.4375
0.5000
0.5625
0.6250
0.7500
0.8750
1.0000
D
Nominal
Thread
Diameter
(Inch)
0.1380
0.1640
0.1900
0.2160
0.2500
0.3125
0.3750
0.4375
0.5000
0.5625
0.6250
0,7500
0.8750
1.0000
A(S)Tensile Stress
Area
(Sq. In.)
0.0175
0.0242
0.0318
0.0524
0.0775
0.1063
0.1419
0.1819
0.3068
0.4418
0.6013
0.7854
A(S)Tensle Stress
Area
(Sq. In.)
0.0091
0.0140
0.0175
0.0242
0.0318
0.0524
0.0775
0.1063
0.1419
0.1819
0.3068
0.4418
0.6013
0.7854
A(R) Allowable
Thread Tension
Root Area (Pounds)
(Sq. In.)
O.w78 '
269
0.0124
414
0.0152
518
0.0214
-716
0.0280
941
0.0469,
1551
0.0699
2294
0.0961
3146
0.1292
4200
0.1664
5384
0.2071
6136
0.3091
8836
0.4286
12026
0.5630
15708
A(R)
Allowable
Thread
Tension
Root Area
(Pounds)
(Sq. in.)
0.0078
437
0.0124
672
0.0152
840
0.0214
1162
0.0280
1526 'N
0.0469
2515
0.0699
3720
0.0961
5102
0.1292
6811
0.1664
8731
0.2071
12149
0.3091
17495
0.42116
23811
0.5630
31102
Allowable Shear
Single
rouble
(Pounds)
(Pounds)
133
267
21.2
I 424
260
520
366
731
479
957
802
1603
1195
2389
1642
3285
2208
4416
2844
5687
3068
6136
4418
8836
6013
12026
7854
15708
For Diameters up thru 9/19%
Minimum Material Thickness to
Bearing (Pounds) Equal Tensile Capacity of Fastener
(In.)
1/8" St.
1/8" Ai.
1/8" AI.
A36
6063 T5
6063-T6
1201
1427
276
I 32R
414
I 492
1653
380
570
1879
432
648
2175
500
750
2719
625
938
3262
750
1125
3806
875
1313
4350
1000
1500
4894
1125
1688
5437
1250
1875
6525
1500
2250
7612
1750
2625
8700
2000
3000
14
A(S) = 0.7854(D - 0.9743;
ll N
TABLE 6
Allowable Shear
Single
Double
(Pounds)
(Pounds)
216
432
3,44
687
421
842
593
1186
T76 .'
1552
1300
2599
1937
3874
2663
5326
3580
7161
4611
9223
6259
12517
9013
18025
12267
24533
16022
32044
For Diameters up thru 9/16":
A36 I 6063-TS 16063-T6
1 n M
1 11211
I 0154 1
I 0,128
I 0:280
I 0202
0.136
0.286
0.209
0.159
0.344
0.248
0.180
0.385
0.279
0.225
0.492
0.354
0.268
0.637
0.425
0.311
0.740
0.494
0.357
0.860
0.571
0.399
0.965
0.640
0.411
0.985
0.655
0.484
1.170
0.766
0.555
1.348
0.892
0.627
1.526
1.010
FI = 0.40F.
Allowable tension - 0.40F [A(S)j
0 40
F = ✓- F.
Allowable shear (Single) - 0.40
F [A(R)j
3
Minimum Material Thickness to
Bearing (Pounds) Equal Tensile Capacity of Fastener
(in.)
1/8" St.
1/8" Al.
1/8" Al.
A36
6063-TS
6063-T6
1201
276
414
1427
328
492
1653
380
570
1879
432
648
2175
500
750
2719
625
938
3262
750
1125
3806
875
1313
4350
1000
1500
4894
1125
1688
5437
1250
1875
6525
1500
2250
7612
1750
2625
8700
2000
3000
A(R) = 0.7854rD - 1.2269?
`` N
A(S) = 0.7854(D - 0. N43�
``
A36
6063-T6
0.144
0.231
0.188
0.308
0.195
0.313
0.232
0.377
0.261
0.422
0.330
0.539
0.396
0.651
0.460
0.756
0.532
0.878
0.596
0.986
0.732
1.220
0.867
1.452
0.998
1.674
1.129
1.894
F, = 0.40F„
Allowable tension - 0.40F„ [A(S)]
0 40
Fv = f F„
Allowable shear (Single) - 40 F [A(R)j
For Diameters 5/8" and over: A(S) = 0.7858D2*
*For fasteners 5/8" diameter and greater, values, formulas and procedures used are taken from the RISC, "Manual of Steel Construction," 9th Edition.
(See page #24 for additional notes.)
25
:,
PLATE CONNECTION TO CONCRETE
ups
—I 7 -'I. t.5In
CONCRETE
l� STEP
( $0 S x (� % n 3500 PSI
Los Lo
TI, '-1 e =
2 S in
Tz. �3Z dos
T 1333 �s fi �32 ��s
T� = Ti t 12,
Ta = (I 4 s
GV� gq 4 c C^�,l caj-atO ° ✓` S :
(4) bolt
rt Z 2- LS 3I 8 x S
t,
n
I
Hilti PROFIS Engineering 3.0.68
www.hilti.com
Company: Page: 1
Address: Specifier:
Phone I Fax: E-Mail:
Design: Concrete - Apr 7, 2021 Date: 4/7/2021
Fastening point:
Specifier's comments:
1 Input data
Anchor type and diameter:
Item number:
Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:
Anchor platen
Profile:
Base material:
Reinforcement:
Seismic loads (cat. C, D, E, or F)
Nil
Kwik Bolt TZ2 - CS 3/8 (2 1/2) hnom3
2210239 KB-TZ2 3/8x5
hef = 2.500 in., hn= = 3.000 in.
Carbon Steel
ESR-4266
12/1/2020 1 12/1/2021
Design Method ACI 318 / AC193
eb = 0.000 in. (no stand-off); t = 0.620 in.
Ix x ly x t = 6.000 in. x 6.000 in. x 0.620 in.; (Recommended plate thickness: not calculated)
Steel pipe, PIPE1-1/2XS; (L x W x T) = 1.900 in. x 1.900 in. x 0.200 in.
cracked concrete, 3000, f� = 3,000 psi; h = 420.000 in.
tension: condition B, shear: condition B; no supplemental splitting reinforcement present
edge reinforcement: none or < No. 4 bar
no
R - The anchor calculation is based on a rigid anchor plate assumption.
Geometry [in.] & Loading [lb, in.Ib]
Y
X
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROMS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan
1
10
Hilti PROFIS Engineering 3.0.68
www.hilti.com
Company: Page: 2
Address: Specifier:
Phone I Fax: E-Mail:
Design: Concrete - Apr 7, 2021 Date: 4/7/2021
Fastening point:
1.1 Design results
Case Description Forces [lb] / Moments [in.lb] Seismic Max. Util. Anchor [%]
Combination 1
N = 1,765; Vx = 180; Vy = 0; no 39
Mx=0;My=0;MZ=0;
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROMS Engineering ( c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan
112
Hilti PROFIS Engineering 3.0.68
www.hilti.com
Company: Page: 3
Address: Specifier:
Phone I Fax: E-Mail:
Design: Concrete - Apr 7, 2021 Date: 4/7/2021
Fastening point:
2 Proof I Utilization (Governing Cases)
Loading Proof
Design values [lb] Utilization
Load Capacity ON / (iv N Status
Tension Concrete Breakout Failure
1,765
4,635
39 / -
OK
Shear Concrete edge failure in direction x+
180
1,424
413 13
OK
Loading PN
Pv
t
Utilization PN,V N
Status
Combined tension and shear loads 0.381
0.126
5/3
24
OK
3 Warnings
• Please consider all details and hints/warnings given in the detailed report!
Fastening meets the design criteria!
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROMS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan
3
12
Hilti PROFIS Engineering 3.0.68
www.hilti.com
Company: Page: 4
Address: Specifier:
Phone I Fax: E-Mail:
Design: Concrete - Apr 7, 2021 Date: 4/7/2021
Fastening point:
4 Remarks; Your Cooperation Duties
• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and
security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly
complied with by the user. All figures contained therein are average figures, and therefore use -specific tests are to be conducted prior to using
the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in.
Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you.
Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to
compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms
and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific
application.
• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
or programs, arising from a culpable breach of duty by you.
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROMS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan
4
13
KB-TZ2 Technical Guide
Table 1B - Minimum edge distance, spacing and concrete thickness for KB-TZ2
Setting
Nominal anchor diameter (in)
information
Symbol
Units
1/4
3/8
1/2
5/8
3/4
Effective min.
in.
1-1/2
1-1/2
2
2-1/2
1-1/2
2
2-1/2
3-1/4
2-3/4
3-1/4
4
3-1/4
3-3/4
4-3/4
embedment
In
of
(mm)
(38)
(38)
(51)
(64)
(38)
(51)
(64)
(83)
(70)
(83)
(102)
(83)
(95)
(121)
Min. member
in.
3-1/4
3-1/4
4
5
3-1/2
4
5
5-1/2
5
5-1/2
6
5-1/2
6
8
thickness
In
m'"
(mm)
(83)
(83)
(102)
(127)
(89)
(102)
(127)
(140)
(127)
(140)
(152)
(140)
(152)
(203)
Carbon steel
in.
1-1/2
5
2-1/2
2-1/2
8
2-3/4
2-3/4
2-1/4
4-1/2
3-1/2
2-3/4
5
4
3-1/2
Min. edge
c mm
(mm)
(38)
(127)
(64)
(64)
(203)
(70)
(70)
(57)
(114)
(89)
(70)
(127)
(102)
(89)
distance
in.
1-1/2
8
6
5
12
5-1/2
9-3/4
5-1/4
6-1/2
5-1/2
7-1/4
10
5-3/4
5-1/2
fors >-
(mm)
(38)
(203)
(152)
(127)
(305)
(140)
(248)
(133)
(165)
(140)
(184)
(254)
(146)
(140)
in.
1-1/2
5
2-1/4
2
12
3-1/2
3
2
4-1/2
2-3/4
2-1/4
4-1/2
3-3/4
3-3/4
Min. anchor
s m°
(mm)
(38)
(127)
(57)
(51)
(305)
(89)
(76)
(51)
(114)
(70)
(57)
(114)
(95)
(95)
spacing
In.
1-1/2
8
3-1/2
4
8
10
8
4-3/4
5-1/2
7
4-1/4
6
7-1/2
4-3/4
for c >_
(mm)
1 (38)
1 (203)
1 (89)
1 (102)
1 (203)
1 (254)
1 (203)
1 (121)
1 (140)
1 (178)
1 (108)
1 (152)
1 (191)
1 (121)
Stainless steel
in.
1-1/2
5
2-1/2
2-1/2
2-3/4
2-1/2
2-1/4
4
3-1/4
2-1/4
5
4
3-3/4
Min. edge
c mm
(mm)
(38)
(127)
(64)
(64)
(70)
(64)
(57)
(102)
(83)
(57)
(127)
(102)
(95)
distance
in.
1-1/2
8
5
5
5-1/2
4-1/2
5-1/4
7
5-1/2
7
11
7-1/2
5-3/4
fors >-
(mm)
(38)
(203)
(127)
(127)
(140)
(114)
(133)
(178)
(140)
(178)
(279)
(191)
(146)
in.
1-1/2
5
2-1/4
2-1/4
2-3/4
2-1/2
2
5-1/2
2-3/4
3
5
4
4
Min. anchor
s.
m°
(mm)
(38)
(127)
(57)
(57)
(70)
(64)
(51)
(140)
(70)
(76)
(127)
(102)
(102)
spacing
In.
1-1/2
8
4
3-1/2
4-1/8
5
4-3/4
5-1/2
4
4-1/4
8
6
5-1/4
fort >_
(mm)
1 (38)
1 (203)
1 (102)
1 (89)
1
1 (105)
1 (127)
1 (121)
1 (140)
1 (102)
1 (108)
1 (203)
1 (152)
1 (133)
For SI: 1 inch = 25.4 mm
s c
i
y
ZT
C
.0
C Q cmin at s
N
$ ----------------
h - hmin
smin atc>_
i
i
c edge distance (c)
Figure 4 — Interpolation of minimum edge distance and anchor spacing
14
April 2021 3
GLASS CLAMP RAILING
TOP MOUNT
PERFORMANCE
TABLE
Allowable Tension Loads' for Threaded Rod Installed in
• • - • Solid Concrete
THREADED
MIN.
ALLOWABLE TENSION LOAD BASED
ALLOWABLE TENSION LOAD BASED
ROD DIA.
EMBEDMENT
ON EPDXY BOND STRENGTH
ON STEEL STRENGTH
2O00 PSI (13.8 MPa)
4000 PSI (27.6 MPa)
ASTM A307
ASTM A193 GR. B7
ASTM F593
In. (mm)
DEPTH
In. (mm)
CONCRETE
CONCRETE
(SAE 1018)
(SAE 4140)
AISI 304 SS
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
3/8 (9.5)
3-3/8 (85.7)
1,265 (5.6)
2,092 (9.3)
2,080 (9.3)
4,340 (19.3)
3,995 (17.8)
4-1/2 (114.3)
1,616 (7.2)
2,622 (11.7)
2,080 (9.3)
4,340 (19.3)
3,995 (17.8)
1/2 (12.7)
4-1/2 (114.3)
3,004 (13.4)
3,369 (1S.0)
3,730 (16.6)
7,780 (34.6)
7,155 (31.8)
6 (152.4)
3,098 (13.8)
4,791 (21.3)
3,730 (16.6)
7,780 (34.6)
7,155 (31.8)
5/8 (15.9)
5-5/8 (142.9)
3,659 (16.3)
5,220 (23.2)
5,870 (26.1)
12,230 (54.4)
11,250 (50.0)
7-1/2 (190.5)
5,046 (22.4)
6,985 (31.1)
,870 (26.1)
12,230 (54.4)
11,250 (50.0)
3/4 (19.1)
6-3/4 (171.S)
4,742 (21.1)
7,255 (32.3)
8,4 0 (37.8)
17,690 (78.7)
14,860 (66.1)
9 (228.6)
6,497 (28.9)
10,057 (44.7)
8,490 (37.8)
17,690 (78.7)
14,860 (66.1)
1 (25.4)
9 (228.6)
10,951 (48.7)
11,209 (49.9)
15,180 7.5)
31,620 (140.6)
26,560 (118.1)
12 (304.8)
11,338 (50.4)
15,923 (70.8)
15,180 (67. )
31,620 (140.6)
26,560 (118.1)
1 Use lower value of either
2 Linear interpolation may
bond or steel strength for allowable
be used for intermediate spacing
tensile load.
and edge distances.
3 186 Lbs X 0.70 = 223U Lb$
(2" Min. edge distance for
3000 PSI concrete)
PERFORMANCE
TABLE
-
Allowable Shear Loads',2 for Threaded Rod Installed in
qROD
• •
Solid Concrete
P
MIN.
ALLOWABLE SHEAR LOAD BASED
ALLOWABLE SHEAR LOAD BASED
EMBEDMENT
ON CONCRETE STRENGTH
ON STEEL STRENGTH
In. (mm)
DEPTH
2O00 PSI (13.8 MPa)
4000 PSI (27.6 MPa)
ASTM A307
ASTM A193 GR. B7
ASTM F593
In. (mm)
CONCRETE
CONCRETE
(SAE1018)
(SAE4140)
AISI304SS
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
3/8 (9.5)
3-3/8 (85.7)
1,557 (6.9)
1,557 (6.9)
1,040 (4.6)
2,170 (9.7)
1,995 (8.9)
112 (12.7)
4-1/2 (114.3)
3,004 (13.4)
3,004 (13.4)
1,870 (8.3)
3,895 (17.3)
3,585 (15.9)
S/8 (15.9)
S-5/8 (142.9)
4,387 (19.S)
4,387 (19.5)
2,940 (13.1)
6,125 (27.2)
5,635 (25.1)
3/4 (19.1)
6-3/4 (171.5)
6,230 (27.7)
6,230 (27.7)
4,250 (18.9)
8,855 (39.4)
7,440 (33.1)
1 (25.4)
9 (228.6)
10,912 (48.5)
10,912 (48.5)
7,590 (33.8)
15,810 (70.3)
13,285 (59.1)
1 Use lower value ofeither concrete or steel strength for allowable shear load.
2 Linear interpolation may be used for intermediate spacing and edge distances. (See page 49)
3,004 Lbs x 0.30 = 901 Lbs
(2" Min Edge distance for 3000 PSI concre...
Combined Tension and Shear Loading -for G5 Adhesive Anchors
Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors
subjected to 100%tension or 100%shear. Use the following equation to evaluate anchors in combined loading conditions:
CNW)+ (Va) 1 No = Applied Service Tension Load Va= Applied Service Shear Load
s Vs Ns = Allowable Tension Load Vs = Allowable Shear Load
16
PERFORMANCE
TABLE
Average Ultimate Tension Loads1,2,3
for Reinforcing Bar
Installed in Solid Concrete
REINFORCING
EMBEDMENT
2000 PSI (13.8 MPa)
4000 PSI (27.6 MPa)
ULTIMATE TENSILE AND YIELD STRENGTH
BAR
IN CONCRETE
IN CONCRETE
IN CONCRETE
GRADE 6DREBAR
MINIMUMYIELD
MINIMUM ULTIMATE
In. (mm)
In.(mm)
ULTIMATE TENSION
ULTIMATE TENSION
Lbs.(kN)
Lbs.(kN)
STRENGTH
TENSILE STRENGTH
Lbs.(kN)
Lbs.(kN)
#3
(9.5)
3-3/8
(85.7)
7,480 (33.3)
8,090 (35.9)
6,600
(29.4)
9,900
(44.0)
4-1/2
(114.3)
N/A
10,488 (46.6)
6,600
(29.4)
9,900
(44.0)
#4
(12.7)
4-1/2
(114.3)
N/A
14,471 (64.4)
12,000
(53.4)
18,000
(80.1)
6
(152.4)
11,235 (50.0)
20,396 (90.7)
12,000
(53.4)
18,000
(80.1)
#5
(15.9)
5-5/8
(142.9)
N/A
21,273 (94.6)
18,600
(82.7)
27,900
(124.1)
7-1/2
(190.5)
18,108 (80.6)
31,863 (141.7)
18,600
(82.7)
27,900
(124.1)
#6
(19.1)
6-3/4
(171.5)
N/A
27,677 (123.1)
26,400
(117.4)
39,600
(176.2)
9
(228.6)
29,338 (130.5)
47,879 (212.9)
26,400
(117.4)
39,600
(176.2)
#7
(22.2)
7-7/8
(200.0)
N/A
43,905 (195.3)
36,000
(160.1)
54,000
(240.2)
10-112
(266.7)
N/A
52,046 (231.5)
36,000
(160.1)
54,000
(240.2)
#8
(25.4)
9
(228.6)
N/A
55,676 (247.7)
47,400
(210.9)
71,100
(316.3)
12
(304.8)
48,000 (213.5)
77,358 (344.1)
47,400
(210.9)
71,100
(316.3)
#9
(28.6)
10-1/8
(257.2)
N/A
62,443 (277.8)
60,000
(266.9)
90,000
(400.4)
13-1/2
(342.9)
N/A
71,959 (320.1)
60,000
(266.9)
90,000
(400.4)
# 10
(31.8)
11-1/4
(285.8)
N/A
70,165 (312.1)
76,200
(339.0)
114,300
(508.5)
15
(381.0)
N/A
78,545 (349.4)
76,200
(339.0)
114,300
(508.5)
1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod.
2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of minimum Grade 60 reinforcing bar.
The use of lower strength rods will result in lower ultimate tension and shear loads.
3 SHEAR DATA: Provided the distance from the rebarto the edge ofthe concrete member exceeds 1.25 times the embedment depth ofthe rebar, calculate the ultimate shear load for the rebar anchorage as 60% ofthe ultimate tensile strength ofthe rebar.
Average Ultimate Tension Loadsl,2 for Threaded Rod
- . - Installed in Solid Concrete
THREADED
HOLE
EMBEDMENT
>_ 3000 PSI (13.8 MPa)
ROD
DIAMETER
IN CONCRETE
IN CONCRETE
In. (mm)
In. (mm)
In. (mm)
ULTIMATE TENSION
Lbs.(kN)
1-1/2 (38.1)
1-3/4 (44.5)
13 (330.2)
100,250 (490.4)
17 (431.8)
143,600 (638.8)
19 (482.6)
150,000 (667.3)
2 (50.8)
2-1/4 (57.2)
16 (406.4)
150,000 (667.3)
17 (431.8)
169,700 (754.9)
1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load ofthe anchor rod.
2 Ultimate load values are>_ 3000 psi in stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod
(ASTM A193 Gr. 37). The use of lower strength rods will result in lower ultimate tension loads. See chart below.
G5 Adhesive Edge/Spacing Distance Load Factor Summary
for Installation of Threaded Rod and Reinforcing Bar',Z
LOAD FACTOR
Critical Edge Distance -Tension
100% Tension Load -
Minimum Edge Distance -Tension
70%Tension Load -
Critical Edge Distance -Shear
100% Shear Load
Minimum Edge Distance -Shear
30% Shear Load -
LOAD FACTOR
Critical Spacing -Tension
100% Tension Load
Minimum Spacing -Tension
75%Tension Load
Critical Spacing -Shear
100% Shear Load
Minimum Spacing -Shear
30% Shear Load
DISTANCE FROM EDGE OF CONCRETE
1.25 x Anchor Embedment
0.50 x Anchor Embedment
1.25 x Anchor Embedment
0.30 x Anchor Embedment
DISTANCE FROM ANOTHER ANCHOR
o 1.50 x Anchor Embedment
0.75 x Anchor Embedment
1.50 x Anchor Embedment
jo 0.50 x Anchor Embedment
1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.
2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction ofthe loading. Use the product oftension and shear loading factors in design.
17
BAR AND TUBE INFILLS
RAILINGS TOP MOUNT
GEOMETRIC
PROPERTIES
HANDRAIL MODEL 0900 - 0 1.9" 316 SS
Section Properties
Area-Sq In 0.9121
Perimeter Ins 23.3860
Wt/Ft-Lbs 1.0489
Ix-In4 1.5801
Sx-In3 0.8316
Rx-In 1.3162
Iy-In4 1.5801
Sy-In3 0.8316
Ry-In 1.3162
BALUSTER POST MODEL 0916 - 01.9" 316 SS
Section Properties
Area-Sq In 1.7859
Perimeter Ins 22.8959
Wt/Ft-Lbs 2.0538
Ix-In4 2.9697
Sx-In3 1.5630
Rx-In 1.2895
Iy-In4 2.9697
Sy-In3 1.5630
Ry-In 1.2895
CROSSBAR TUBE MODEL 0900 - 01/2" 316 SS
Section Properties
Area-Sq In 7.0686
Perimeter Ins 9.4248
WVFt-Lbs 8.1289
Ix-In4 3.9761
Sx-In3 2.6507
Rx-In 0.7500
Iy-In4 3.9761
Sy-In3 2.6507
0 Ry-In 0.7500
20
Project Name: 4410 N HWY Al A, FORT PIERCE, FL 34949 Date:04/01/2021
Picket Horizontal Railing Design (Top, Bottom, Post
Allowable Stresses for Aluminum
6063-T6
6063-T5
6061-T6
6005-T5
(psi)
(psi)
(psi)
(psi)
Fb
15000
9500
19000
19000
(Tubes & Shapes)
4800
4800
9000
8000
Fb
18000
11500
24000
24000
(Round & Oval)
5500
5500
10500
9000
Fv
8500
5500
12000
12000
Tubes, Shapes & Round
2800
2800
5000
4500
E
1 10100 ksi
10100 ksi
10100 ksi
10100 ksi
White bars apply to nonwelded members and to welded members at loc. fathers than 1.0 in from a weld
Shadded bars apply to within 1.0 in of a weld
Allowable Stress for Aluminum Welding:
Aluminum Filler Alloy 5356
Fv=7000 psi
Allowable Stress for Steel
Strong and Weak Axis Allowables Stress for Tube Steel Shape:
Fb=23760 psi, Fv=14400 psi for Fy=36 ksi
E=29000 Ksi
Fb=33000 psi, Fv=20000 psi for Fy=50 ksi
E=29000 Ks
Allowable Stress for Steel Welding:
Welding: E-70XX
Fv=-21000 psi
Allowable Stress for Stainless Steel
Strong and Weak Axis Allowables Stress for Tube Steel Shape:
Fb=16216 psi, Fv=9189 psi for (SS 304) Fy=30 ksi
E=28000 Ksi
Fb=34730 psi, Fv=20838 psi for (S32304 Duplex SS) Fy=58 ksi
E=28000 Ksi
Fb=62870 psi, Fv=37720 psi for (S17400-H1150) Fy=105 ksi
E=28000 Ksi
Allowable Stress for Steel Welding:
Welding: E318 or E309
Fv=19200 psi
Allowable Stress for Wood
Strong and Weak Axis Allowables Stress for Lumber No.2 Non Dense (2"-4" thick):
Fb=1350 psi, Fv=175 psi for 2"-4" Wide
E=1400 Ksi
Fb=1150 psi, Fv=175 psi for 5"-6" Wide
E=1400 Ksi
DESIGN INFORMATION:
2020 Florida Building Code 7th Edition
AISC Manual of Steel Construction 15th Ed, NDS-ASD for Wood Construction 2018, ASCE 27-13
Structural Stainless Steel, Aluminum Design Manual 2015
DESIGN LOADS:
Handrail Design Loads: Concentrated Load = 200 lbs. applied at any point in any direction.
Uniform Load = 50 plf applied in any direction (other than dwelling units).
Guardrail System Loads: Concentrated Load = 200 lbs. applied at any point in any direction at the top
of the guardrail (other than dwelling units include a load of 100 lbs applied
vertically downward at the top of guardrail).
Concentrated horizontal load of 200 lbs applied on a 1 sq ft. area at any point
in the system.
21
Handrail Design:
veKv a� _aa_a
o- --anta�
Laad
i i�aat
�L L -�
eneral Data:
Railing Span (in)
Hpost := 42.0 Post Height (in)
dpieket:= 4.0 Distance center/center of Picket (in)
eneral Loads:
q,,i d:= 45.63 Wind Pressure (psf)
P200:= 200.0 Single Concentrated Load (Ibs) .....Railing P=200.00, Fence P=0.00
qso:= 50.0 Uniform Distributed Load (plf)......... Railing q=50.00, Fence q=0.00
Pso:= 50.0 Single Concentrated Load (Ibs) .....Railing P=50.00, Fence P=0.00
op Railing Data: I IPost Data: I IPicket Data:
FbTR := 34730.0 psi FbPT := 34730.00 psi FbPK := 34730.00 psi
FVTR:= 2083 O psi FvPT:= 20838.00psi FvPK:= 20838.00psi
SxTR:= 0.831 Vertical Loads in SxPT:= 1.563 in3 SxPK:= 2.650 in3
SyTR:= 0.831 Horizontal Loads in APT:= 1.785 in APK:= 7.068 in
ATR : = 0.9121 in
22
op Railing Design:
ctual Moment:
Concentrated Load = 200 lbs.
P2oo' L
MTR.200: = 5 MTR.200 = 1920.00 in — lb
Uniform Load = 50 nlf (12)
MTR.50 0.1012• q50 1 L2 MTR.50 = 971.52 in — lb
For Wind Pressure
tlwind dpicket 2
MTR.wind 0.1012 144 2 L MTR.wind = 147.77 in — lb
MTR := max(MTR.200, MTR.50, MTR.wind) MTR = 1920.00 in — lb
ctual Shear:
Concentrated Load = 200 lbs.
VTR.200 P20dbs VTR.200 = 200.00 Ibs
Uniform Load = 50 plf50
r
VTR.50.= 0.6• I 112)). L IVTR.50 = 120.00 Ibs
For Wind Pressure
gwind dpicket
VTR.wind.— 0•6 144 J 2 L VTR.wind = 18.25 Ibs
VTR:= Max VTR.200, VTR.50, VTR.wind) VTR = 200.00 Ibs
ection Required:
Bending Design: Section Modulus Required
MTR
STR.min STR.min = 0•06 in3
FbTR
Shear Design: Area Required
1.5• VTR
ATR.min ATR.min = 0•01 in2
FVTR
ection Provided:
BENDINGtop:= if(STR.min min(SxTR, SYTR), "N.G" , "OK"� BENDINGtop = "OK"
SHEARtop:= if(ATR.min ATR, "N.G" , "OK") SHEARtnp = "OK"
23
Post Design:
ctual Reaction:
Concentrated Load = 200 lbs.
RPT.200 : = P200
Uniform Load = 50 plf
q50 1
RPT.50 1.1 12 L
For Wind Pressure
gwind I
RPT.wind : = 1.1 - ( 144 Hpost- L
RPT := max(RPT.200, RPT.50, RPT.wind)
RPT.200 = 200.00 Ibs
RPT.50 = 220.00 Ibs
RPT.wind = 702.70 Ibs
RPT = 702.70 Ibs
ctua I Moment:
M max(max(R R ) H R H2 M 14756.74 in - lb
PT �= PT.200� PT.50 ' post> PT.wind' 2 � PT =
ctual Shear:
VPT:= RPT VPT = 702.70 Ibs.
ection Required:
Bending Design: Section Modulus Required:
MPT 3
SPT.min:= SPT.min = 0.42 in
FbPT
Shear Design: Area Required:
1.5• VPT 2
APT.min:= APT.min = 0.05 1 in
FvPT
ection Provided:
BENDING post:= if(SPT.min > SxpT, "N.G" , "OK") BENDINGpost = "OK"
SHEARpost := if(APT.min > APT, "N.G" , "OK") SHEARpost = "OK"
24
L
Picket Design:
i ,,,, ,.i o,a ore„ 1 ft^Z
7 3.000
3.000
cable
H.post
1-3 0000
Assume three pickets acting simultaneously
P50 1 lbs
Wpicket:= 12 ' 3 Wpicket = 1 .39 in
gpicket:= max(25.00, q,ind) gpicket = 45.63 psf
L2
MpK:= max 6• Wpicket' — Wpicket' 18, %ick f dpic of J MpK = 365.04 in -lb
2
(L, — 6) gpickef dpickef Li�
Vpg:= ma 12• Wpicket' L � 144.2 VPK = 30.42 Ib
ection Required:
Bending Design: Section Modulus Required
SPK.min MpK SPK.min = 0.011 in3
FbPK
Shear Design: Area Required:
APK.min : = 1.5• VpK APK.min = 0.002 Inz
FVPK
ection Provided:
BENDINGpicket:= if(SPK.n i„ >_ SxpK, "N.G" , "OK"� BENDINGpicket = "OK"
SHEARpicket if(APK.min > APK, "N.G" , "OK") SHEARpicket = "OK"
25
PERFORMANCE
TABLE
Allowable Tension Loads' for Threaded Rod Installed in
• • - • Solid Concrete
THREADED
MIN.
ALLOWABLE TENSION LOAD BASED
ALLOWABLE TENSION LOAD BASED
ROD DIA.
EMBEDMENT
ON EPDXY BOND STRENGTH
ON STEEL STRENGTH
2O00 PSI (13.8 MPa)
4000 PSI (27.6 MPa)
ASTM A307
ASTM A193 GR. B7
ASTM F593
In. (mm)
DEPTH
In. (mm)
CONCRETE
CONCRETE
(SAE 1018)
(SAE 4140)
AISI 304 SS
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
3/8 (9.5)
3-3/8 (85.7)
1,265 (5.6)
2,092 (9.3)
2,080 (9.3)
4,340 (19.3)
3,995 (17.8)
4-1/2 (114.3)
1,616 (7.2)
2,622 (11.7)
2,080 (9.3)
4,340 (19.3)
3,995 (17.8)
1/2 (12.7)
4-1/2 (114.3)
3,004 (13.4)
3,369 (1S.0)
3,730 (16.6)
7,780 (34.6)
7,155 (31.8)
6 (152.4)
3,098 (13.8)
4,791 (21.3)
3,730 (16.6)
7,780 (34.6)
7,155 (31.8)
5/8 (15.9)
5-5/8 (142.9)
3,659 (16.3)
5,220 (23.2)
5,870 (26.1)
12,230 (54.4)
11,250 (50.0)
7-1/2 (190.5)
5,046 (22.4)
6,985 (31.1)
,870 (26.1)
12,230 (54.4)
11,250 (50.0)
3/4 (19.1)
6-3/4 (171.S)
4,742 (21.1)
7,255 (32.3)
8,4 0 (37.8)
17,690 (78.7)
14,860 (66.1)
9 (228.6)
6,497 (28.9)
10,057 (44.7)
8,490 (37.8)
17,690 (78.7)
14,860 (66.1)
1 (25.4)
9 (228.6)
10,951 (48.7)
11,209 (49.9)
15,180 7.5)
31,620 (140.6)
26,560 (118.1)
12 (304.8)
11,338 (50.4)
15,923 (70.8)
15,180 (67. )
31,620 (140.6)
26,560 (118.1)
1 Use lower value of either
2 Linear interpolation may
bond or steel strength for allowable
be used for intermediate spacing
tensile load.
and edge distances.
3 186 Lbs X U.7U = 223U Lb$
(2" Min. edge distance for
3000 PSI concrete)
PERFORMANCE
TABLE
-
Allowable Shear Loads',2 for Threaded Rod Installed in
qROD
• •
Solid Concrete
P
MIN.
ALLOWABLE SHEAR LOAD BASED
ALLOWABLE SHEAR LOAD BASED
EMBEDMENT
ON CONCRETE STRENGTH
ON STEEL STRENGTH
In. (mm)
DEPTH
2O00 PSI (13.8 MPa)
4000 PSI (27.6 MPa)
ASTM A307
ASTM A193 GR. B7
ASTM F593
In. (mm)
CONCRETE
CONCRETE
(SAE1018)
(SAE4140)
AISI304SS
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
Lbs.(kN)
3/8 (9.5)
3-3/8 (85.7)
1,557 (6.9)
1,557 (6.9)
1,040 (4.6)
2,170 (9.7)
1,995 (8.9)
112 (12.7)
4-1/2 (114.3)
3,004 (13.4)
3,004 (13.4)
1,870 (8.3)
3,895 (17.3)
3,585 (15.9)
S/8 (15.9)
S-5/8 (142.9)
4,387 (19.S)
4,387 (19.5)
2,940 (13.1)
6,125 (27.2)
5,635 (25.1)
3/4 (19.1)
6-3/4 (171.5)
6,230 (27.7)
6,230 (27.7)
4,250 (18.9)
8,855 (39.4)
7,440 (33.1)
1 (25.4)
9 (228.6)
10,912 (48.5)
10,912 (48.5)
7,590 (33.8)
15,810 (70.3)
13,285 (59.1)
1 Use lower value ofeither concrete or steel strength for allowable shear load.
2 Linear interpolation may be used for intermediate spacing and edge distances. (See page 49)
1,557 Lbs x 0.30 = 467 Lbs
(2" Min Edge distance for 3000 PSI
Combined Tension and Shear Loading -for G5 Adhesive Anchors
Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors
subjected to 100%tension or 100%shear. Use the following equation to evaluate anchors in combined loading conditions:
CNW)+ (Va) 1 No = Applied Service Tension Load Va= Applied Service Shear Load
s Vs Ns = Allowable Tension Load Vs = Allowable Shear Load
26
PERFORMANCE
TABLE
Average Ultimate Tension Loads1,2,3
for Reinforcing Bar
Installed in Solid Concrete
REINFORCING
EMBEDMENT
2000 PSI (13.8 MPa)
4000 PSI (27.6 MPa)
ULTIMATE TENSILE AND YIELD STRENGTH
BAR
IN CONCRETE
IN CONCRETE
IN CONCRETE
GRADE 6DREBAR
MINIMUMYIELD
MINIMUM ULTIMATE
In. (mm)
In.(mm)
ULTIMATE TENSION
ULTIMATE TENSION
Lbs.(kN)
Lbs.(kN)
STRENGTH
TENSILE STRENGTH
Lbs.(kN)
Lbs.(kN)
#3
(9.5)
3-3/8
(85.7)
7,480 (33.3)
8,090 (35.9)
6,600
(29.4)
9,900
(44.0)
4-1/2
(114.3)
N/A
10,488 (46.6)
6,600
(29.4)
9,900
(44.0)
#4
(12.7)
4-1/2
(114.3)
N/A
14,471 (64.4)
12,000
(53.4)
18,000
(80.1)
6
(152.4)
11,235 (50.0)
20,396 (90.7)
12,000
(53.4)
18,000
(80.1)
#5
(15.9)
5-5/8
(142.9)
N/A
21,273 (94.6)
18,600
(82.7)
27,900
(124.1)
7-1/2
(190.5)
18,108 (80.6)
31,863 (141.7)
18,600
(82.7)
27,900
(124.1)
#6
(19.1)
6-3/4
(171.5)
N/A
27,677 (123.1)
26,400
(117.4)
39,600
(176.2)
9
(228.6)
29,338 (130.5)
47,879 (212.9)
26,400
(117.4)
39,600
(176.2)
#7
(22.2)
7-7/8
(200.0)
N/A
43,905 (195.3)
36,000
(160.1)
54,000
(240.2)
10-112
(266.7)
N/A
52,046 (231.5)
36,000
(160.1)
54,000
(240.2)
#8
(25.4)
9
(228.6)
N/A
55,676 (247.7)
47,400
(210.9)
71,100
(316.3)
12
(304.8)
48,000 (213.5)
77,358 (344.1)
47,400
(210.9)
71,100
(316.3)
#9
(28.6)
10-1/8
(257.2)
N/A
62,443 (277.8)
60,000
(266.9)
90,000
(400.4)
13-1/2
(342.9)
N/A
71,959 (320.1)
60,000
(266.9)
90,000
(400.4)
# 10
(31.8)
11-1/4
(285.8)
N/A
70,165 (312.1)
76,200
(339.0)
114,300
(508.5)
15
(381.0)
N/A
78,545 (349.4)
76,200
(339.0)
114,300
(508.5)
1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod.
2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of minimum Grade 60 reinforcing bar.
The use of lower strength rods will result in lower ultimate tension and shear loads.
3 SHEAR DATA: Provided the distance from the rebarto the edge ofthe concrete member exceeds 1.25 times the embedment depth ofthe rebar, calculate the ultimate shear load for the rebar anchorage as 60% ofthe ultimate tensile strength ofthe rebar.
Average Ultimate Tension Loadsl,2 for Threaded Rod
- . - Installed in Solid Concrete
THREADED
HOLE
EMBEDMENT
>_ 3000 PSI (13.8 MPa)
ROD
DIAMETER
IN CONCRETE
IN CONCRETE
In. (mm)
In. (mm)
In. (mm)
ULTIMATE TENSION
Lbs.(kN)
1-1/2 (38.1)
1-3/4 (44.5)
13 (330.2)
100,250 (490.4)
17 (431.8)
143,600 (638.8)
19 (482.6)
150,000 (667.3)
2 (50.8)
2-1/4 (57.2)
16 (406.4)
150,000 (667.3)
17 (431.8)
169,700 (754.9)
1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load ofthe anchor rod.
2 Ultimate load values are>_ 3000 psi in stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod
(ASTM A193 Gr. 37). The use of lower strength rods will result in lower ultimate tension loads. See chart below.
G5 Adhesive Edge/Spacing Distance Load Factor Summary
for Installation of Threaded Rod and Reinforcing Bar',Z
LOAD FACTOR
Critical Edge Distance -Tension
100% Tension Load -
Minimum Edge Distance -Tension
70%Tension Load -
Critical Edge Distance -Shear
100% Shear Load
Minimum Edge Distance -Shear
30% Shear Load -
LOAD FACTOR
Critical Spacing -Tension
100% Tension Load
Minimum Spacing -Tension
75%Tension Load
Critical Spacing -Shear
100% Shear Load
Minimum Spacing -Shear
30% Shear Load
DISTANCE FROM EDGE OF CONCRETE
1.25 x Anchor Embedment
0.50 x Anchor Embedment
1.25 x Anchor Embedment
0.30 x Anchor Embedment
DISTANCE FROM ANOTHER ANCHOR
o 1.50 x Anchor Embedment
0.75 x Anchor Embedment
1.50 x Anchor Embedment
jo 0.50 x Anchor Embedment
1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.
2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction ofthe loading. Use the product oftension and shear loading factors in design.
27