Loading...
HomeMy WebLinkAboutStructural CalculationsMarch 15, 2022 National Consulting Engineers, Inc. Certificate of Authorization # 8755 7255 SW 126th Street Pinecrest, FL 33156 Phone: (305) 321-7041 Fax: (305) 238-2362 Structural Calculations For Chain Link Fence At 5349 South Steel BLVD. FT. Pierce, FL. 34946 Project Number: NC 22-102 22©Z-o�33 REVIEWED FOR CODE COMPLIANCE ST. LUCIE COUNTY BOCC C--'- No. 54794 ° STATE OF <v� low ry /ii� 0�0 o AI Mohamed W. Fahmy;.Ph,D.;,P:-E: Florida Registration Number Total Number of Pages: 5 Not Including This Page To the best of my knowledge, I performed, reviewed and checked all the structural calculations including computer generated 9�8tbons FILE (;®py hiAR 3 0 2022 St. Lucie County Permitting NATIONAL, CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL. Structural Design And FEM Analysis Certificate of Authorization #8755 7255 S.W. 126th Street SUBJECT: Design of Screen SHEET N°: Pinecrest, FL. 33156 1 Phone: (305) 321-7041 Fax: (305) 236-2362 JOB NO: DATE: DESIGNED BY: Mohamed W Fahmy, PhD, PE # 54794 NC22-102 13/14,2022 Mohamed Code: FBC 2020 Risk Category I Exposure C Wind Speed (mph) 165 Mean Roof Height of Structure (h) (ft) 10 Velocity Pressure Exposure Coef. [Kz] 0.85 Unit Height (ft) [Z] Wind Directionality Factor ]Kd] 0.85 Ground Elevation Factor [Ke] 1 Topographic factor [KA 1 Ground Elevation Factor [Ke] 1 Velocity Pressure (lb/ft) [qh] = 0.00256*KZ*KZt*Kd*Ke*V2 Working qh (psf) = qz*.6 35.54 Cf 1.3 G 0.85 Mesh Opening Ratio [R] 0.165925926 11..�...... -9 AR--L.. Material: Section: . Material: Section: B (in) q(psf) Area (in2) Allowable Stress (kis) Allowable Force Tall (#) = B/FS L (in) spacing between vertical supports Height (in) Number of cables used (N) Exact Spacing S (in) w (#/ft) E (ksi) y,,,ax(in) = L*(3wL/64/E/A)^1/3 (Equation #3) T (#) = w*L*U8/y,,,. (Equation #4) Pre -tension Force (#) [PT] Max. Tension Force (#) [Tmax] = T +PT Section 26.7.3 Figure 26.5-1 B Table 26.10-1 Table 26.6-1 Section 26.8.2 Table 26.9-1 Table 26.9-1 59.24 Eq. (26.10-1) for Circular Section Steel ASTM A-35 9 Gauge Steel ASTM A 392-E SS A316 1 x19 from Seco South 0.2500 0.2500 0.8182746 0.049087385 24 1178.097245 120 12 5 2.000 4.09 29000.00 1.3253 463.05 100.00 563.05 Status OK NATIONAL CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL. Structural Design And FEM Analysis Certificate of Authorization #8755 7255 S.W. 126th Street SUBJECT: Design of Screen SHEET N°: Pinecrest, FL. 33156 2 Phone: (305) 321-7041 Fax: (305) 238-2362 JOB NO: DATE: DESIGNED BY: Mohamed W Fahmy, PhD, PE # 54794 NC22-102 13/14/2022 Mohamed Desigin of Post Material: Steell ASTM A-500 Grade B Section: � 3" Schedule 20 Sx (in3) 2 Sy (in3) 2 Allowable Stress (Ksi) 30.82 a1 (in) a2(in) Cf Width facing wind (in) (B) Wp(#/ft) Wind Load on Post = qz*G*Cf*B Tributary Width (ft) Load from Mesh (#/ft) Total Load (#/ft) [wp] = W 1 +W m Height (ft) [H] Mp (in.#)=wp*H*H/12/2 f (ksi) = M/Sx Vp (#) Code: FBC 2010, Section 1819.6 Type of footing is pole -type Width of footing b (in) Depth of footing (in) P (#) h (ft) = Mp/P P1 (Lateral Capacity) psf P2 (Lateral Capacity @ one foot ) psf L1 (Location of center of pressure) (in) L2 (in) S1 (lateral bearing at Center of pressure) A = 2.344*P/(S1 * b) (in2) 1 d(ft) = 0.5A{1 + (1 + 4.36 A)2 } 4.00 4.00 1.80 3.25 10.64 10.00 65.17 75.17 8.00 28865.67 14.43 601.37 Use 12"x42" 12 42 601.37 4.00 1000.00 1200.00 2.00 12.00 1033.33 - 1.36 3.21 Status OK OK P1 S1 P2 T I- L2 NATIONAL CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL. Structural Design And FEM Analysis Certificate of Authorization #8755 7255 S.W. 126th Street Subject: Theory of Embedment SHEET N°: Pinecrest, FL. 33156 3 Phone: (305) 321-7041 Fax: (305) 238-2362 JOB NO: DATE: DESIGNED BY:. Mohamed W Fahmy, PhD, PE # 54794 NC22-102 13/14/2022 Mohamed Iglu V u : X DIRECTION b U c FT M Assume stress distribution is linear. There are 2 equations from equilibrium: FFx=O (1) FMa=O (2) From Eqn. (1) FT = FB + Vu (3) From Eqn. (2) Ma = 0 +1 FT*(h-3)—FB*(h3x)—Mu—Vu*h=0 (4) *FT = 2 * ft*x*b (5) FB = 2 * fb*(h—x)*b (6) * From similar triangles oab and ocd: ft—xJ_hx ft (7) Jb hx x 1 * ft * x * b —1 ft (h — x) 2 * b — Vu = 0 (8) Egns. (5), (6) and (7) in Eqn. (3) 2 2 x 3x 2ft*x*(h—x3)*b-12 ft*(h—x)2 *b—Mu—Vu*h=0 (9)Egns.(5),(6)and (7)inEqn. 2 NATIONAL CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL. Structural Design And FEM Analysis Certificate of Authorization #8755 7255 S.W. 126th Street Subject: Calculations for Post Embedment inside Concrete SHEET N": Pinecrest, FL. 33156 Footing 4 Phone: (305) 321-7041 Fax: (306) 238-2362 JOB NO: DATE: DESIGNED BY: Mohamed W Fahmy, PhD, PE # 54794 INC22-102 3/14/2022 Mohamed Post Dimensions: Parallel to Slab Edge (in) [b] 3.500 Total Embedment Depth (in) 36 Applied Service Shear (#) M 601.37 Applied Service Moment (#.in) [M] 28865.67 Solve Eqns. (8) & (9) simultaneously to obtain x and f T x (in) 19.85 f T (psi) 81.94 Fe for Block (psi) 2500 ACI 318-14 Table 14.5.6.1 Sgrt(A2/A1) > 2 fbearing (Psi) _ �*(0.85*fc)*2 f bearing (psi) 2762.5 Radius of Hole (in) [r] 1.125 fbearing concrete (psi) = (b/2r)*fT 127.46 Status OK Check on Bottom Block Breakout: Clear Edge Distance (in) Lc 5.56 (D 4.00 Y= �/2— (�/2)2 —(�/2*.707)2 0.59 L3 (in) 6.15 L1 (in) 8.69 L2 (in) 6.62 Al (in) 57.51 A2 (in2) 26.71 Atotal (in2) 168.43 Ultimate Shear by Bottom Block (#) 25263.75 Ultimate Shear Applied (#) = Ft 2846.28 Status OK FRONT VI TOP VIEW TOP VIEW ,URE " A" LIRE "A" ART. 7.7]. Bearno Flex'ure of Straight Bars 179 TABLE 12 Beaus restrained against horizontal di t .11r no., manner of loading_ and support I finds pinned to rigid sup- ports, concentrated center load IV C Ends fixed to rigid sup- ports, concentrated- center load W at the ends Formulas to solve for ym. and P 3 Xmax + jylnax = Er (Solve for ymax) 772EA, _ 2 P = 4 ja -yinax 'Use case le from 'Fable 9b or Table I F to determine maximum slopes and moments after solving for P 3 ymax + 161 ymax = 2:WO (Solve for ymax) P n2E4 tit 4:f2. m az Use case 1d from •Table 9d or Table I I to determine n4xitnuni slopes and rrioments after solving for P r 9 :I. Ends pinned to rigid 41sup _:max + vm�uc — 4zt4fi1 (Solve for ym ) ports, uniformly distrib- Wed transverse load to on P _ 7r2f;A'ytnnax2 —' entire span 412 I. Ends .fixed to rigid sup• ports, uniformly distrib- uted transverse load w on entire span Equation #2 1 -Use Iasi: 2e from "fable 9b or Table I I to determine maximum slopes and moments after soli-ing for P r1 3 'tul`t ,�'mfuc + (Solve for y 16j, nnax 4vr4E1 maic� _ 7r2E,4 2 P T 4li2 YM.0 Use case 2d fro o'en Table '9d or "fable 11 to deterixtine maximum slopes and moment.+ after solving for P t � i; -Same as case 1, except n 0 -- sin 0 fS or if © C I2°, 9 = � f�V � rs 1;��uation #1 beam is perfectly flexible 2E�1 � , �= like a cable or chain and 1. IV P W 9 P 4 _ _ has an unstretched length 2 can 8 l r�. Same as case 3, except ! fi�J',1 Vinac = l beam is perfectly' flexible like a cable or chain and P has an unstretched letigth Syn,ax Eauatflon #31 • ttrtetrti�tet:ttr:Itstt tt Equation #4