Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutStructural CalculationsMarch 15, 2022
National Consulting Engineers, Inc.
Certificate of Authorization # 8755
7255 SW 126th Street
Pinecrest, FL 33156
Phone: (305) 321-7041
Fax: (305) 238-2362
Structural Calculations
For
Chain Link Fence
At
5349 South Steel BLVD.
FT. Pierce, FL. 34946
Project Number: NC 22-102
22©Z-o�33
REVIEWED FOR
CODE COMPLIANCE
ST. LUCIE COUNTY
BOCC C--'-
No. 54794
°
STATE OF <v�
low
ry /ii� 0�0 o AI
Mohamed W. Fahmy;.Ph,D.;,P:-E:
Florida Registration Number
Total Number of Pages: 5
Not Including This Page
To the best of my knowledge, I performed, reviewed and checked all the structural
calculations including computer generated 9�8tbons
FILE (;®py
hiAR 3 0 2022
St. Lucie County
Permitting
NATIONAL, CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL.
Structural Design And FEM Analysis
Certificate of Authorization #8755
7255 S.W. 126th Street SUBJECT: Design of Screen SHEET N°:
Pinecrest, FL. 33156 1
Phone: (305) 321-7041 Fax: (305) 236-2362 JOB NO: DATE: DESIGNED BY:
Mohamed W Fahmy, PhD, PE # 54794 NC22-102 13/14,2022 Mohamed
Code: FBC 2020
Risk Category
I
Exposure
C
Wind Speed (mph)
165
Mean Roof Height of Structure (h) (ft)
10
Velocity Pressure Exposure Coef. [Kz]
0.85
Unit Height (ft) [Z]
Wind Directionality Factor ]Kd]
0.85
Ground Elevation Factor [Ke]
1
Topographic factor [KA
1
Ground Elevation Factor [Ke]
1
Velocity Pressure (lb/ft) [qh] = 0.00256*KZ*KZt*Kd*Ke*V2
Working qh (psf) = qz*.6
35.54
Cf
1.3
G
0.85
Mesh Opening Ratio [R]
0.165925926
11..�...... -9 AR--L..
Material:
Section: .
Material:
Section:
B (in)
q(psf)
Area (in2)
Allowable Stress (kis)
Allowable Force Tall (#) = B/FS
L (in) spacing between vertical supports
Height (in)
Number of cables used (N)
Exact Spacing S (in)
w (#/ft)
E (ksi)
y,,,ax(in) = L*(3wL/64/E/A)^1/3 (Equation #3)
T (#) = w*L*U8/y,,,. (Equation #4)
Pre -tension Force (#) [PT]
Max. Tension Force (#) [Tmax] = T +PT
Section 26.7.3
Figure 26.5-1 B
Table 26.10-1
Table 26.6-1
Section 26.8.2
Table 26.9-1
Table 26.9-1
59.24 Eq. (26.10-1)
for Circular Section
Steel ASTM A-35
9 Gauge Steel ASTM A 392-E
SS A316 1 x19 from Seco South
0.2500
0.2500
0.8182746
0.049087385
24
1178.097245
120
12
5
2.000
4.09
29000.00
1.3253
463.05
100.00
563.05 Status OK
NATIONAL CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL.
Structural Design And FEM Analysis
Certificate of Authorization #8755
7255 S.W. 126th Street SUBJECT: Design of Screen SHEET N°:
Pinecrest, FL. 33156 2
Phone: (305) 321-7041 Fax: (305) 238-2362 JOB NO: DATE: DESIGNED BY:
Mohamed W Fahmy, PhD, PE # 54794 NC22-102 13/14/2022 Mohamed
Desigin of Post
Material: Steell ASTM A-500 Grade B
Section: � 3" Schedule 20
Sx (in3) 2
Sy (in3) 2
Allowable Stress (Ksi) 30.82
a1 (in)
a2(in)
Cf
Width facing wind (in) (B)
Wp(#/ft) Wind Load on Post = qz*G*Cf*B
Tributary Width (ft)
Load from Mesh (#/ft)
Total Load (#/ft) [wp] = W 1 +W m
Height (ft) [H]
Mp (in.#)=wp*H*H/12/2
f (ksi) = M/Sx
Vp (#)
Code: FBC 2010, Section 1819.6
Type of footing is pole -type
Width of footing b (in)
Depth of footing (in)
P (#)
h (ft) = Mp/P
P1 (Lateral Capacity) psf
P2 (Lateral Capacity @ one foot ) psf
L1 (Location of center of pressure) (in)
L2 (in)
S1 (lateral bearing at Center of pressure)
A = 2.344*P/(S1 * b) (in2) 1
d(ft) = 0.5A{1 + (1 + 4.36 A)2 }
4.00
4.00
1.80
3.25
10.64
10.00
65.17
75.17
8.00
28865.67
14.43
601.37
Use 12"x42"
12
42
601.37
4.00
1000.00
1200.00
2.00
12.00
1033.33 -
1.36
3.21
Status OK
OK
P1
S1
P2
T
I-
L2
NATIONAL CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL.
Structural Design And FEM Analysis
Certificate of Authorization #8755
7255 S.W. 126th Street Subject: Theory of Embedment SHEET N°:
Pinecrest, FL. 33156 3
Phone: (305) 321-7041 Fax: (305) 238-2362 JOB NO: DATE: DESIGNED BY:.
Mohamed W Fahmy, PhD, PE # 54794 NC22-102 13/14/2022 Mohamed
Iglu
V u :
X DIRECTION
b
U
c
FT
M
Assume stress distribution is linear.
There are 2 equations from equilibrium:
FFx=O (1) FMa=O (2)
From Eqn. (1) FT = FB + Vu (3)
From Eqn. (2) Ma = 0 +1
FT*(h-3)—FB*(h3x)—Mu—Vu*h=0 (4)
*FT = 2 * ft*x*b (5) FB = 2 * fb*(h—x)*b (6)
* From similar triangles oab and ocd:
ft—xJ_hx ft (7)
Jb hx x
1 * ft * x * b —1 ft (h — x) 2 * b — Vu = 0 (8) Egns. (5), (6) and (7) in Eqn. (3)
2 2 x
3x
2ft*x*(h—x3)*b-12 ft*(h—x)2 *b—Mu—Vu*h=0 (9)Egns.(5),(6)and (7)inEqn.
2
NATIONAL CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL.
Structural Design And FEM Analysis
Certificate of Authorization #8755
7255 S.W. 126th Street Subject: Calculations for Post Embedment inside Concrete SHEET N":
Pinecrest, FL. 33156 Footing 4
Phone: (305) 321-7041 Fax: (306) 238-2362 JOB NO: DATE: DESIGNED BY:
Mohamed W Fahmy, PhD, PE # 54794 INC22-102 3/14/2022 Mohamed
Post Dimensions:
Parallel to Slab Edge (in) [b] 3.500
Total Embedment Depth (in) 36
Applied Service Shear (#) M 601.37
Applied Service Moment (#.in) [M] 28865.67
Solve Eqns. (8) & (9) simultaneously to obtain x and f T
x (in) 19.85
f T (psi) 81.94
Fe for Block (psi)
2500
ACI 318-14 Table 14.5.6.1 Sgrt(A2/A1) > 2
fbearing (Psi) _ �*(0.85*fc)*2
f bearing (psi)
2762.5
Radius of Hole (in) [r]
1.125
fbearing concrete (psi) = (b/2r)*fT
127.46 Status OK
Check on Bottom Block Breakout:
Clear Edge Distance (in) Lc
5.56
(D
4.00
Y= �/2— (�/2)2 —(�/2*.707)2
0.59
L3 (in)
6.15
L1 (in)
8.69
L2 (in)
6.62
Al (in)
57.51
A2 (in2)
26.71
Atotal (in2)
168.43
Ultimate Shear by Bottom Block (#)
25263.75
Ultimate Shear Applied (#) = Ft
2846.28 Status OK
FRONT VI
TOP VIEW
TOP VIEW
,URE " A"
LIRE "A"
ART. 7.7].
Bearno Flex'ure of Straight Bars 179
TABLE 12 Beaus restrained against horizontal di
t .11r no., manner of loading_
and support
I finds pinned to rigid sup-
ports, concentrated center
load IV
C Ends fixed to rigid sup-
ports, concentrated- center
load W
at the ends
Formulas to solve for ym. and P
3
Xmax + jylnax = Er (Solve for ymax)
772EA, _ 2
P = 4 ja -yinax
'Use case le from 'Fable 9b or Table I F to determine maximum slopes
and moments after solving for P
3
ymax + 161 ymax = 2:WO (Solve for ymax)
P n2E4 tit
4:f2. m az
Use case 1d from •Table 9d or Table I I to determine n4xitnuni slopes
and rrioments after solving for P
r 9
:I. Ends pinned to rigid 41sup _:max + vm�uc — 4zt4fi1 (Solve for ym )
ports, uniformly distrib-
Wed transverse load to on P _ 7r2f;A'ytnnax2
—'
entire span 412
I. Ends .fixed to rigid sup•
ports, uniformly distrib-
uted transverse load w on
entire span
Equation #2 1
-Use Iasi: 2e from "fable 9b or Table I I to determine maximum slopes
and moments after soli-ing for P
r1 3 'tul`t
,�'mfuc + (Solve for y
16j, nnax 4vr4E1 maic�
_ 7r2E,4 2
P T 4li2 YM.0
Use case 2d fro o'en Table '9d or "fable 11 to deterixtine maximum slopes
and moment.+ after solving for P
t �
i; -Same as case 1, except n 0 -- sin 0 fS or if © C I2°, 9 = � f�V � rs 1;��uation #1
beam is perfectly flexible 2E�1 � , �=
like a cable or chain and 1. IV P W
9 P
4
_ _
has an unstretched length 2 can 8
l
r�. Same as case 3, except ! fi�J',1 Vinac = l
beam is perfectly' flexible
like a cable or chain and P
has an unstretched letigth Syn,ax
Eauatflon #31
• ttrtetrti�tet:ttr:Itstt tt
Equation #4