Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Structural Calculations
March 15, 2022 National Consulting Engineers, Inc. Certificate of Authorization # 8755 7255 SW 126th Street Pinecrest, FL 33156 Phone: (305) 321-7041 Fax: (305) 238-2362 Structural Calculations For Chain Link Fence At 5349 South Steel BLVD. FT. Pierce, FL. 34946 Project Number: NC 22-102 22©Z-o�33 REVIEWED FOR CODE COMPLIANCE ST. LUCIE COUNTY BOCC C--'- No. 54794 ° STATE OF <v� low ry /ii� 0�0 o AI Mohamed W. Fahmy;.Ph,D.;,P:-E: Florida Registration Number Total Number of Pages: 5 Not Including This Page To the best of my knowledge, I performed, reviewed and checked all the structural calculations including computer generated 9�8tbons FILE (;®py hiAR 3 0 2022 St. Lucie County Permitting NATIONAL, CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL. Structural Design And FEM Analysis Certificate of Authorization #8755 7255 S.W. 126th Street SUBJECT: Design of Screen SHEET N°: Pinecrest, FL. 33156 1 Phone: (305) 321-7041 Fax: (305) 236-2362 JOB NO: DATE: DESIGNED BY: Mohamed W Fahmy, PhD, PE # 54794 NC22-102 13/14,2022 Mohamed Code: FBC 2020 Risk Category I Exposure C Wind Speed (mph) 165 Mean Roof Height of Structure (h) (ft) 10 Velocity Pressure Exposure Coef. [Kz] 0.85 Unit Height (ft) [Z] Wind Directionality Factor ]Kd] 0.85 Ground Elevation Factor [Ke] 1 Topographic factor [KA 1 Ground Elevation Factor [Ke] 1 Velocity Pressure (lb/ft) [qh] = 0.00256*KZ*KZt*Kd*Ke*V2 Working qh (psf) = qz*.6 35.54 Cf 1.3 G 0.85 Mesh Opening Ratio [R] 0.165925926 11..�...... -9 AR--L.. Material: Section: . Material: Section: B (in) q(psf) Area (in2) Allowable Stress (kis) Allowable Force Tall (#) = B/FS L (in) spacing between vertical supports Height (in) Number of cables used (N) Exact Spacing S (in) w (#/ft) E (ksi) y,,,ax(in) = L*(3wL/64/E/A)^1/3 (Equation #3) T (#) = w*L*U8/y,,,. (Equation #4) Pre -tension Force (#) [PT] Max. Tension Force (#) [Tmax] = T +PT Section 26.7.3 Figure 26.5-1 B Table 26.10-1 Table 26.6-1 Section 26.8.2 Table 26.9-1 Table 26.9-1 59.24 Eq. (26.10-1) for Circular Section Steel ASTM A-35 9 Gauge Steel ASTM A 392-E SS A316 1 x19 from Seco South 0.2500 0.2500 0.8182746 0.049087385 24 1178.097245 120 12 5 2.000 4.09 29000.00 1.3253 463.05 100.00 563.05 Status OK NATIONAL CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL. Structural Design And FEM Analysis Certificate of Authorization #8755 7255 S.W. 126th Street SUBJECT: Design of Screen SHEET N°: Pinecrest, FL. 33156 2 Phone: (305) 321-7041 Fax: (305) 238-2362 JOB NO: DATE: DESIGNED BY: Mohamed W Fahmy, PhD, PE # 54794 NC22-102 13/14/2022 Mohamed Desigin of Post Material: Steell ASTM A-500 Grade B Section: � 3" Schedule 20 Sx (in3) 2 Sy (in3) 2 Allowable Stress (Ksi) 30.82 a1 (in) a2(in) Cf Width facing wind (in) (B) Wp(#/ft) Wind Load on Post = qz*G*Cf*B Tributary Width (ft) Load from Mesh (#/ft) Total Load (#/ft) [wp] = W 1 +W m Height (ft) [H] Mp (in.#)=wp*H*H/12/2 f (ksi) = M/Sx Vp (#) Code: FBC 2010, Section 1819.6 Type of footing is pole -type Width of footing b (in) Depth of footing (in) P (#) h (ft) = Mp/P P1 (Lateral Capacity) psf P2 (Lateral Capacity @ one foot ) psf L1 (Location of center of pressure) (in) L2 (in) S1 (lateral bearing at Center of pressure) A = 2.344*P/(S1 * b) (in2) 1 d(ft) = 0.5A{1 + (1 + 4.36 A)2 } 4.00 4.00 1.80 3.25 10.64 10.00 65.17 75.17 8.00 28865.67 14.43 601.37 Use 12"x42" 12 42 601.37 4.00 1000.00 1200.00 2.00 12.00 1033.33 - 1.36 3.21 Status OK OK P1 S1 P2 T I- L2 NATIONAL CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL. Structural Design And FEM Analysis Certificate of Authorization #8755 7255 S.W. 126th Street Subject: Theory of Embedment SHEET N°: Pinecrest, FL. 33156 3 Phone: (305) 321-7041 Fax: (305) 238-2362 JOB NO: DATE: DESIGNED BY:. Mohamed W Fahmy, PhD, PE # 54794 NC22-102 13/14/2022 Mohamed Iglu V u : X DIRECTION b U c FT M Assume stress distribution is linear. There are 2 equations from equilibrium: FFx=O (1) FMa=O (2) From Eqn. (1) FT = FB + Vu (3) From Eqn. (2) Ma = 0 +1 FT*(h-3)—FB*(h3x)—Mu—Vu*h=0 (4) *FT = 2 * ft*x*b (5) FB = 2 * fb*(h—x)*b (6) * From similar triangles oab and ocd: ft—xJ_hx ft (7) Jb hx x 1 * ft * x * b —1 ft (h — x) 2 * b — Vu = 0 (8) Egns. (5), (6) and (7) in Eqn. (3) 2 2 x 3x 2ft*x*(h—x3)*b-12 ft*(h—x)2 *b—Mu—Vu*h=0 (9)Egns.(5),(6)and (7)inEqn. 2 NATIONAL CONSULTING ENGINEERS, INC. Project: 5349 South Steel BLVD., FT. Pierce, FL. Structural Design And FEM Analysis Certificate of Authorization #8755 7255 S.W. 126th Street Subject: Calculations for Post Embedment inside Concrete SHEET N": Pinecrest, FL. 33156 Footing 4 Phone: (305) 321-7041 Fax: (306) 238-2362 JOB NO: DATE: DESIGNED BY: Mohamed W Fahmy, PhD, PE # 54794 INC22-102 3/14/2022 Mohamed Post Dimensions: Parallel to Slab Edge (in) [b] 3.500 Total Embedment Depth (in) 36 Applied Service Shear (#) M 601.37 Applied Service Moment (#.in) [M] 28865.67 Solve Eqns. (8) & (9) simultaneously to obtain x and f T x (in) 19.85 f T (psi) 81.94 Fe for Block (psi) 2500 ACI 318-14 Table 14.5.6.1 Sgrt(A2/A1) > 2 fbearing (Psi) _ �*(0.85*fc)*2 f bearing (psi) 2762.5 Radius of Hole (in) [r] 1.125 fbearing concrete (psi) = (b/2r)*fT 127.46 Status OK Check on Bottom Block Breakout: Clear Edge Distance (in) Lc 5.56 (D 4.00 Y= �/2— (�/2)2 —(�/2*.707)2 0.59 L3 (in) 6.15 L1 (in) 8.69 L2 (in) 6.62 Al (in) 57.51 A2 (in2) 26.71 Atotal (in2) 168.43 Ultimate Shear by Bottom Block (#) 25263.75 Ultimate Shear Applied (#) = Ft 2846.28 Status OK FRONT VI TOP VIEW TOP VIEW ,URE " A" LIRE "A" ART. 7.7]. Bearno Flex'ure of Straight Bars 179 TABLE 12 Beaus restrained against horizontal di t .11r no., manner of loading_ and support I finds pinned to rigid sup- ports, concentrated center load IV C Ends fixed to rigid sup- ports, concentrated- center load W at the ends Formulas to solve for ym. and P 3 Xmax + jylnax = Er (Solve for ymax) 772EA, _ 2 P = 4 ja -yinax 'Use case le from 'Fable 9b or Table I F to determine maximum slopes and moments after solving for P 3 ymax + 161 ymax = 2:WO (Solve for ymax) P n2E4 tit 4:f2. m az Use case 1d from •Table 9d or Table I I to determine n4xitnuni slopes and rrioments after solving for P r 9 :I. Ends pinned to rigid 41sup _:max + vm�uc — 4zt4fi1 (Solve for ym ) ports, uniformly distrib- Wed transverse load to on P _ 7r2f;A'ytnnax2 —' entire span 412 I. Ends .fixed to rigid sup• ports, uniformly distrib- uted transverse load w on entire span Equation #2 1 -Use Iasi: 2e from "fable 9b or Table I I to determine maximum slopes and moments after soli-ing for P r1 3 'tul`t ,�'mfuc + (Solve for y 16j, nnax 4vr4E1 maic� _ 7r2E,4 2 P T 4li2 YM.0 Use case 2d fro o'en Table '9d or "fable 11 to deterixtine maximum slopes and moment.+ after solving for P t � i; -Same as case 1, except n 0 -- sin 0 fS or if © C I2°, 9 = � f�V � rs 1;��uation #1 beam is perfectly flexible 2E�1 � , �= like a cable or chain and 1. IV P W 9 P 4 _ _ has an unstretched length 2 can 8 l r�. Same as case 3, except ! fi�J',1 Vinac = l beam is perfectly' flexible like a cable or chain and P has an unstretched letigth Syn,ax Eauatflon #31 • ttrtetrti�tet:ttr:Itstt tt Equation #4