HomeMy WebLinkAboutINSTALLATION OF GROUND PAN,I page I
1 OLIVER TECHNOLOGIES, INC. revision 6/07
FLORIDA INSTALLATION INSTRUCTIONS FOR THE
J MODEL 1101 "V" SERIES ALL STEEL FOUNDATION SYSTEM _
SCIANNED MODEL 1101"V" (STEPS 1-15)
B� LONGITUDINAL ONLY.• FOLLOW STEPS 1-9
�$. I de Counfy FOR ADDING LATERAL ARM: Follow Steps 10-15
FOR CONCRETE APPLICATIONS: Follow Steps 16-19
ENI INEERS STAMP ENGINEERS STAMP
I
1. SPECI L CIRCUMSTANCES: If the following conditions occur - STOP! Contact Oliver Technologies at 1-800-284-7437 :
a) Pier height exceeds 48" b) Length of home exceeds 76' c) Roof eaves exceed 16" d) Sidewall height exceed 96"
e) Location is within 1500 feet of coast
INSTALLATION OF GROUND PAN
2. Remov weeds and debris in an approximate two foot square to expose firm soil for each ground pan (C) .
3. Place g ound pan (C) directly below chassis I-beam . Press or drive pan firmly into soil until flush with or below soil.
SPECIAL NOTE: The longitudinal 'Y brace system serves as a pier under the home and should be loaded as any
other pi !I r. It is recommended that after leveling piers, and one-third inch (1/3") before home is lowered completely on
to piers
�17complete steps 4 through 9 below then remove jacks.
11 INSTALLATION OF LONGITUDINAL "V" BRACE SYSTEM
NOTE: YVHEN INSTALLING THE LONGITUDINAL SYSTEM ONLY, A MINIMUM OF 2 SYSTEMS PER FLOOR SECTION IS REQUIRED. SOIL TEST
PROBE S"OULD BE USED TO DETERMINE CORRECT TYPE OF ANCHOR PER SOIL CLASSIFICATION. IF PROBE TEST READINGS ARE BETWEEN
175 & 2�5 A 5 FOOT ANCHOR MUST BE USED. IF PROBE TEST READINGS ARE BETWEEN 276 & 350 A 4 FOOT ANCHOR MAY BE USED. USE
GROUNDi ANCHORS WITH DIAGONAL TIES AND STABILIZER PLATES EVERY 5'4" . VERTICAL TIES ARE ALSO REQUIRED ON HOMES SUPPLIED
WITH VERTICAL TIE CONNECTION POINTS (PER FLORIDA REG.).
4. Select �he correct square.tube brace (E) length for set - up (pier) height at support location. (The 18" tube is always
used as the bottom part of the longitudinal arm). Note: Either tube can be used by itself, cut and drilled to length as long as a
40 to 45 degree angle is maintained.
PIER HEIGHT 1.25" ADJUSTABLE 1.50" ADJUSTABLE
roxl 45 degrees Max.) Tube Length Tube Length
22"
214
33/4" to 32 1 /4"
32" i'
18"
33" to 411' ` ....
44" ..
18"
40" to 48"
54"
18"
5. Install) (2) of the 1.50" square tubes (E {18" tube) ) into the "U" bracket (J), insert carriage bolt and leave nut loose for final
adjust, ent.
6. Place I-beam connector (F) loosely on the bottom flange of the I-beam.
7. Slide) he selected 1.25" tube (E) into a 1.50" tube (E) and attach to I-beam connectors (F) and fasten loosely with bolt and nut.
8. Repeat steps 6 through 7 to create the "V" pattern of the square tubes loosely in place. The angle is not to exceed 45
degree and not below 40 degrees.
9. After aJl bolts are tightened, secure 1.25" and 1.50" tubes using four(4) 1/4"-14 x 3/4" self -tapping screws in pre -drilled holes.
11 INSTALLATION OF LATERAL TELESCOPING TRANSVERSE ARM SYSTEM
THE MODEL 1101 "V" (LONGITUDINAL & LATERAL PROTECTION) ELIMINATES THE NEED FOR MOST STABILIZER PLATES & FRAME TIES.
NOTE: THE USE OF THIS SYSTEM REQUIRES VERTICAL TIES SPACED AT 5'4".
FOUR FOOT (4') GROUND ANCHOR MAYBE USED EXCEPT WHERE THE HOME MANUFACTURER SPECIFIES DIFFERENT.
10. Install remaining vertical tie -down straps and 4' ground anchors per home manufacturer's instructions. NOTE: Centerline
ancho s to be sized according to soil torque condition. Any manufacturer's specifications for sidewall anchor loads in excess of
4,000 bs. require a V anchor per Florida Code.
11. NOTE,J Each system is required to have a frame be and stabilizer attached at each lateral arm stabilizing location. This frame tie &
stabilizer plate needs to be located within 18" from of center ground pan.
12. Selec the correct square tube brace (H) length for set-up lateral transverse at support location. The lengths come in either 60"
or 72"1 lengths. (With the 1.50" tube as the bottom tube, and the 1.25" tube as the inserted tube.)
13. Install the 1.50 transverse brace (H) to the ground pan connector (D) with bolt and nut.
14. Slide 11.25" transverse brace into the 1.50" brace and attach to adjacent I-beam connector ( I ) with bolt and nut.
i ri Cnrn irm 1 fin" fronevaren orm fn 1 Sri" frnnevnren orm v icinn fni it /Al 1 IA" - 1A v 3/A" calf-fnnninn eerawe in nre-drlled hninc
OLIVER TECHNOLOGIES, INC.
1-800-284-7437
02/02/2018
Telephone: 931 796 4555
Fax: 931796 8811
www.olivertechnologies.com
page 2
INSTALLATION USING CONCRETE RUNNER / FOOTER 'revision 6/07
16. A cone ete runner, footer or slab may be used in place of the steel ground pan.
a) The�concrete shall be minimum 2500 psi mix
b) A concrete runner may be either longitudinal or transverse, and must be a minimum of 8" deep with a minimum width of 16 inches
longitudinally or 18 inches transverse to allow proper distance between the concrete bolt and the edge of the concrete (see below).
c) Footers must have minimum surface area of 441 sq. in. (i.e. 21" square), and must be a minimum of 8" deep.
d) If a full slab is used, the depth must be a 4" minimum at system bracket location, all other specifications must be per local jurisdiction.
Speicial inspection of the system bracket installation is not required.. Footers must allow for at least 4" from the concrete bolt to the edge
Of the concrete.
NOTE: The bottom of all footings, pads, slabs and runners must be per local jurisdiction.
LONGITUDINAL: (Model 1101 LC "V")
17. When 1 sing Part # 1101-W-CPCA (wetsetl. simply install the bracket in runner/footer OR When installing in cured concrete use Part #
101-13'CPCA d set . The 1101 (dryset) CA bracket is attached to the concrete using (2) 5/8"x3" concrete wedge bolts (Simpson part #
S1623 OH 5/8" X 3" or Powers equivalent). Place the CA bracket in desired location. Mark bolt hole locations, then using a 5/8" diameter
masonry bit, drill a hole to a minimum depth of 3". Make sure all dust and concrete is blown out of the holes. Place wedge bolts into drilled
holes, then place 1101 (dry set) CA bracket onto wedge bolts and start wedge bolt nuts. Take a hammer and lightly drive the wedge bolts
down 6 hitting the nut (making sure not to hit the top of threads on bolt). The sleeve of concrete wedge bolt needs to be at or below the top
of cone ete. Complete by tightening nuts.
LATERAL:I(Model 1101 TC "V")
18. For wet set (part # 1101-W-TACA) installation simply install the anchor bolt into runner/footer. For dry set installation (part # 1101-D-TACA)-
mark dolt hole locations, then using a 5/8" diam. masonry bit, drill a hole to a minimum depth of 3". Make sure all dust and concrete is
blown but of the hole. Place wedge bolts (Simpson part #S162300H 5/8" X 3" or Powers equivalent) into (D) concrete dry transverse
connector and into drilled hole. If needed, take a hammer and lightly drive the wedge bolts down by hitting the nut (making sure not to hit
the top of threads on bolt), then remove the nut. The sleeve of concrete wedge bolt needs to be at or below the top of concrete.
19. When sing part # 1101 CVW (wetset) or 1101 CVD (dryset), install per steps 17 & 18.
Notes:
It:
1. LENGTH OF HOUSE IS THE ACTUAL BOX SIZE
2. • = STABILIZER PLATEAND FRAME TIE LOCATION (reeds b
be locabrd within 18 inches ofcenberdgla nd pen oraxnehe)
3. ED= LOCATION OF LONGrUDINAL BRACING ONLY
4. �` TRANSVERSE & LONGf1UDINAL LOCATIONS
ALL WIDTHS;
•
LENGTHS UP TO 52'
• •
ALL WIDTHS; AND LENGTHS OVER 52' TO 80'
I�I
•
C
HOMES WITH°5/12,ROOF PITCH REQUIRE- •PER FLORIDA REGULATIONS
6 systems for home lengths up to 52' and 8 systems for, homes over 52' and up. 80' One stabilizer
plate AWN&ate tie required at each lateral bracing system.
hors ma$ be used in ail
toons except where
re man � urers sped
lions forsidewall straps
In exce� of 4,000 lbs. ,I Transverse arm I beam
se Ioc34ions require a 5' connector 11
hor. Per Florida Code. / <H ' Transverse arm
Top (12T)
bottom (1.5' )
77z Z�77_ �
Pan
transverse
connectors
E o Brace Tub
Top (125)
Bottom (1.5")
Ground Pan
I
Longitud dry
concrete bracket
part # 1101 D-CPCA
I
I
Wet brae et part #
1101 W-C PCA not
shown
I
rida appro ed 4' ground
:hors may be used in al]
aeons exkbpt where home
nufacturerri specifications
sidewall snaps are in
ass of4.090 tbs. These
ations require a 5' anchor.
r Florida .Code.
U bracket
transverse
connectors
F :1r brace I beam
connectors
J ground Pan
_-� V Bracket
page 3
revision 6107
C = GROUND PAN
D = GROUND PAN CONNECTOR
U BRACKETS TRANSVERSE
E = TELESCOPING V BRACE
TUBE ASSEMBLY W/ 1.5 BOT-
TOM TUBE AND 1.25 TUBE
INSERT
F = "W BRACE 1-BEAM CONNEC-
TORS ASSEMBLY
H = TELESCOPING TRANSVERSE
ARM ASSEMBLY
I = TRANSVERSE ARM I -BEAM
CONNECTOR
J= V PAN BRACKET
Model # 1101 "V"
I -Beam '_21 C' amp
Alternate Hole for (1) PerAssembly
Narrower Beam Flange
Grade 5 -1/2" x 1-
Carriage Bolt 8 Nut
�
Grade 5/2 21/2"
Carriage'8�11 d; Nut
1-BEA� CONNECTOR BRACKET
1 Transverse armI beam
connector
i� <H ' Transverse arm
Top (1.25")/
,bottom (1.5-
E Ir BraceTubyf/
Top (1.25'
Bottom (1.5")
Concrete
Footed Runner
F -V brace 1 beam
connectors
J Concrete
_ter 'V° Bracket
a
Model 1101 CVD
Model 1101 CVW -,.�..
I ot shown
C = CONCRETE FOOTERIRUNNER
D = CONCRETE U BRACKETTRANSVERSE
ciCONNECTOR (connects with grade 5 -12- x 2
12— carriage bolt & nut)
E = TELESCOPING V BRACE
TUBE ASSEMBLY W/ 1.5 BOT-
TOM TUBE AND 1.25 TUBE
INSERT
F = -ir BRACE I -BEAM CONNECTORASSEMBLY
(connects with grade 5 -112" x 47 carriage bolt
& nut)
H = TELESCOPING TRANSVERSE ARM
ASSEMBLY
1 = TRANSVERSE ARM I -BEAM CONNECTOR
(connects with grade 5 -12- x 210— carriage bolt
& nut)
J= CONCRETE "W BRACKET (connects with
grade 5 -1127 x 4" carriage bolt & nut)
Model # 1101 C "V"
i OLIVER TECHNOLOGIES, INC. Telephone: 931796 4555
1-800 284-7437 Fax: 931796 8811
02/02/2018 www.ofivertechnologies.com
4
VERTICAL VINYL $RIRTING ( components & installation
I .
I
IWAL-L
{
I
-
...ATTACHED. UAT14
�rKH SCR&wS Ik,"APAgr
I ;
I
'TbP_�'ROry-T FLOOR
SNAPSJ#aro "TaP BACK
ti'069'i ScRisw5 AND PAmEL C%rTS
i
BLOCK "5uP?O
3.9 k miss me Fool ••
SE UREb dF vENTtLA'rADW ^ _�
'MP. BACK Apo
S&TTOM R,%, � V.W INCH Sc�EaS
rAtt.01lNEItS a46AGCEsd;g94.E ev
f?f--N UVG ' by V-iVotiT 4uA PULMAJ
x OF ajw P'A.
ME-4
.B�D'ryro ACkt'TAGHEC TO GRouk,4
VJ174 ' nea CaALIVAN17-66: NA+L 19 "oc
(IF 50IL l5 SANOy'TEN Qjti,noc3
i
I
I
I
I
!'I 2/02/2018
Certification of Engineered Flood Openings
In accordance with NFIP, FEMA TB 1-08, and ASCE/ U- 4.24-05
I' hereby certify that the Crawl Space Door Systems flood vents 8160,1220CS,1232CS,16160,1624CS, 1632C5, 2032CS, 2424CS,
and 2436CS are designed'in accordance with the requirements of the NFIP "Flood Insurance Manual" (2011) to provide automatic
equalizatlon of hydrostatic flood forces by allowing for the entry and exit of floodwaters, when properly Installed and sized as set
forth filelow. This certification follows the design requirements and specifications established in FEMA Technical Bulletin 1-08,
"OpenlPgs in Foundation Walls and Walls of Enclosures Below Elevated Buildings in Special Flood Hazard Areas", and the ASCE
Standard for "Flood Resistant Design and Construction" (ASCE/SEI 24-05). The actual vent opening measurements were determined
and cel tifled by Mr. Christopher Mark Loney, Virginia PE No. 029000. Calculations are based on the spreadsheet formulas, and
"Revie%% of certification of Engineered Flood Openings, dated January 16, 2012" prepared by Dr. Georg Reichard, Associate Professor
of Buil i ing Construction, Virginia Tech.
Design. Chatacteristics
Section 2.6.2.2 of ASCE 24 provides an equation to determine the required net area,of engineered openings (A,) for a given enclosed
area (l� ). This equation is based- on the hydraulic formula for the flow rate across sharp edged orifices. I have utilized this equation
to calc late 1) the respected flow rate through the individual openings between louvers; 2) the flow rate through the'main frame
opening in case the louver Is blown out during a flood event; and 3) the flow rate of water flowing through louver blades following
hydraut is short tube theory. The ultimate maximum total enclosed area (Aj that can be serviced by a single vent has then been
determ ned by utilizing the lowest flow rate of the three assessed scenarios for each vent and is listed in Table 1.
These %alues are based on the following assumptions:
• In Il�bsence of reliable data, the rates of rise and fall .have been
aspmed with 5 feet/hour;
• Th.6 (maximum) difference between the exterior and interior
flAdwater •levels has been assumed with 1 foot during base
fl 1I d conditions;
• A actor of safety of 5 has been assumed, which is consistent
with design pr4ctices related to protection of life and property;
• Th�net area of openings (A,) as provided by the manufacturer.
Installatiion ,Requirements and Limitations
This c' rtification will be voided if the following installation
requir fnents and limitations are not enforced:
• Thl re shall be a minimum of two openings on different sides of Table 1 Maximum total enclosed area (Ae) that can be
each enclosed area, served by each individual model based ''on the
• ThIvet
bottom of each required opening shall be no more than lft given net area of engineered openings (k)
abIhe adjacent ground level;
• No temporary (e.g. during cold weather) or permanent solid cover may be placed into or over the flood vent that would block
th' automatic entry or exit of floodwaters at any time;
• Wiere analysis indicates 'rates of rise and fall greater than.5 ft/hr, the total enciosed.area as given in Table 1 shall be reduced
accordingly to accountfor the higher rates.of rise and fall. .
")
Model
H x W
[in]
A.
[ins]
A.
[fee
❑
816CS
8 x 16
106
265
❑
.1220CS
12 x 20
237
Soo
0
1232CS
12 x 32
306
645
❑
1616CS
16 x 16
184
395
❑
1624CS
16 x 24
312
670
❑
1632CS
16 x 32
408
835
❑
2032Cs
20 x 32
630
1240
0
2424CS
24 x 24
570
1730
El
2436CS
24 x 36
852
1765
Professional �� �� ���,.;
N
d me, Tttle Steve A. 6eci,. President, Geci & Associates Engineers, Inc. `
,�F, •..;• G�Vi�
G;EN�C '.�j
�,�
•
N0. 33658 • ..
•
; STATE OF
Address 2950 N 12`h'Avenue, Pensacola, FL 32503 `�
License Florida Professional Engineer, Lic . e o. 3658
ignature ��
•
hdentfiGation
_of tYte Building and Installed Flood Vents (By Others.)
The food
vent models marked in Table 1*) are beinginstalled at the following building:
Building
Address
I
PROJECT RIO-2688-17
ENGINEERING EVALUATION REPORT FOR ATTACHING JAMES HARDIE® BRAND
FIBER -CEMENT PLANKS TO WOOD OR METAL FRAMED WALLS WITH VARIOUS FASTENERS
JAMES HARDIE BUILDING PRODUCTS, INC.
10901 ELM AVENUE
FONTANA, CA 92337
TABLE OF CONTENTS
PAGE
:OVER PAGE
1
:VALUATION SUBJECT
2
:VALUATION SCOPE
2
:VALUATION PURPOSE
2
tEFERENCE REPORTS
2
'EST RESULTS
3
ABLE 1, RESULTS OF TRANSVERSE LOAD TESTING
3
ABLE 2A THROUGH TABLE 2C, ALLOWABLE DESIGN LOADS BY PLANK WIDTH
4
)ESIGN WIND LOAD PROCEDURES
5
ABLE 3, COEFFICIENTS AND CONSTANTS USED IN DETERMINING V AND p
5
'ABLE 4, ALLOWABLE STRESS DESIGN C&C PRESSURES EXPOSURE B
6
ABLE 5, ALLOWABLE STRESS DESIGN C&C PRESSURES EXPOSURE C
6
ABLE 6, ALLOWABLE STRESS DESIGN C&C PRESSURES EXPOSURE D
6
ABLE 7, ALLOWABLE WIND SPEED (MPH) FOR HARDIEPLANK SIDING
7-12
IMITATIONS OF USE
12
AS PRODUCT EVALUATOR, THE UNDERSIGNED CERTIFIES THAT THE LISTED PRODUCTS ARE IN
COMPLIANCE WITH THE REQUIREMENTS OF THE ASCE 7 -10, THE 2017 FLORIDA BUILDING CODE,
AND THE 2015 INTERNATIONAL BUILDING CODE.
PREPARED BY:
RONALD I. OGAWA & ASSOCIATES, INC.
16835 ALGONQUIN STREET #443
HUNTINGTON BEACH, CA 92649
714-292-2602
714-847-4595 FAX
3
FILE COPY
RONALD I. OGAWA ASSOCIATES, INC.
16835 ALGONQUIN STREET #443
HUNTINGTON BEACH, CA 92649
714-292-2602
714-847-4695 FAX
PROJECT: RIO-2688-17
JAMES HARDIE BUILDING PRODUCTS, INC.
1-888542-7343
info@jameshardie.com
EVALUATION SUBJECT
HarcllePlank® Lap Siding
James Hardie Product Trade Names covered in this evaluation:
HardiePlank® Lap Siding, CemPlanW Siding, Preva!P Lap Siding
EVALUATION SCOPE:
ASCE 7-10
2017 Florida Building Code
2015International Building Code®
EVALUATION PURPOSE:
This analysis is to determine the ma)dmum design 3-second gust wind speed to be resisted by an assembly of HardiePlank (CemPlank, Prevail Lap) siding fastened to wood or metal framing with nails
or screws.
REFERENCE REPORTS:
1. Intertek Report 3148104000-002, Transverse load testing on HardiePlank and HardlePanel Fiber -Cement panels
2. Intertek Report 100717048COQ-003, Transverse load testing on HardiePlank and HardieShingle
94i1i�\ OGAVV'�''s�
w
o
_ FssfO�A�- - o
2
RONALD I. OGAWA ASSOCIATES, INC.
16835 ALGONQUIN STREET #443
HUNTINGTON BEACH, CA 92649
714-292-2602
714-847-4595 FAX
PROJECT: RIO-26BB-17
JAMES HARDIE BUILDING PRODUCTS, INC.
1-888-542-7343
info@jameshardie.com
RESULTS:
Table 1 { Results of Transverse Load Testing
Report
Number
3148104COQ-002
3148104COQ•002
100717048COQ-0D3
100717048COQ-003
Test Agency
Intertek
Intertek
Intertek
Intertek
Thickness
(In.)
0.3125
0.3125
0.3125
0.3125
Width (in.)
5.25
9.25
8.25
8.25
Frame Type
11
Wood 2° x 4°SPF
w/ 7116'
OSB sheathing
Wood 2" x 4' SPF
w/ 7/16"
OSB sheathing
Wood 2' x 4" SPF
w/ 7/16"
OSB sheathing
Wood 2" x 4" SPF
wl7/16"
OSB sheathing
Frame Spacing
(in.)
12
12
8
6
Fastener
Type
#8 waferhead screw, 1
5/8" x 0.375" HD
#8 waferhead screw, 1
5/8" x 0.375" HD
4d ring shank siding
1.5" x 0.09D' x 0.215"
4d ring shank siding
1.5" x 0.090" x 0.215"
FastenerILength
(inches)
0.625
1.625
1.5
1.6
Fastening
Method
Blind nailed to OSB
Blind nailed to OSB
Blind nailed to OSB
Blind nailed to OSB
Ultmate'Load
(psf)
310.4
138.8
152
198
Design Load
303.5
46.3
50.7
66.0
ENective'Tributa Area
0.333
0.667
0.389
0.292
Fastener, Load , as tested
(Ibffestener)
34.5
30.8
19J
19.3
Adjusted 'yW.'ithdrawal design load
(lb/fastencr) , W
I'
35.6
35.6
Net Fast er Penetration (in.), P
0.437
OA37
Wood Sp ciflc Gravity, G
0.70
0.70
Nail Shank Diameter (in.), D
0.090
0.090
Withdrawal design value per NDS
2015 dr ESR-1539 (lbin. penetration),
IN
50.9
50.9
;alculated fastener vAthdrawal load is compared with the
ast result and the more conservative one will be used.
7. Pmowaore design load is determined from ultimate load divided by a factor of safety of 3.
2. HardiePlank Siding complies with ASTM C1186, Standard Specification for Grade 11, Type A Non -asbestos Fiber -Cement Flat Sheets.
3. An equil�alent specific gravity of 0.70 for ring shank nails installed on OSB is recommended by APATT-039C.
4. Calcutatgd fastener withdrawal load is compared with the test result, and then the more conservative one will be used.
For all cases In the table, the adjusted withdrawal design value, W. is calculated as
W=CD•W•P
Where, i)
CD = told duration factor per NDS 2015 Table 2.3.2 for wind/earthquake load = 1.6
W = withdrawal design value, calculated per NDS-2016 or ESR-1539, whichever applicable
P - fastjener embedment depth, in.
When nOshank, D, 2 0.099 inch but 5 0.375 inch for smooth shank nails. NDS-2015 equation (11.2-3) is used to calculate withdrawal design value
W = 138D' G(5/2)' D
Where,
G = wood specific gravity per Table 11.3.3A
D = nail shank diameter, in.
When nail (shank, D, is less than 0.099 inch, or in the case of ring shank nails, the withdrawal design values were obtained from ICC-ES ESR-1539 Table 2.
3
RONALD I. OGAWA ASSOCIATES, INC.
16835 ALGONQUIN STREET #443
HUNTINGTON BEACH, CA 92649
714-292-2602
714-847-4595 FAX
PROJECT: RIO-2688-17
JAMES HARDIE BUILDING PRODUCTS, INC.
1-888-542-7343
info@jameshardie.com
For Table 2A to 2C the designs loads will be calculated by proportioning the tributary area to each fastener, thereby design load to each fastener will be kept constant. By doing so, the allowable design
load for various HardiePlank widths and stud spacing will be determined.
Table 2A, Allowable Design Loads Based on Constant Fastener Load, #8 wafer head screw x 0.375" HD, fasteners concealed (blind screw) at 12" O.C. to WSP sheathing only
For 5.25 inch wide HardiePlank:
Design load = ultimate failure load/FOS = -310.4 psf/ 3 = -103.5 psf
Effective tributary = ((plank width exposed to weather X fastener spacing)/144) = ((5.25-1.25) X 12)/144 = 0.333 sq.ft.
Fastener load = design load X tributary area = -103.5 X 0.333 = -34.6 pounds
For 9.25 inch wide HardiePlank:
Design load = ultimate failure load/FOS=-138.8 psf/ 3 = -46.3 psf
Effective tributary - ((plank width exposed to weather X fastener spacing)/144) = ((9.25-1.25) X 12)/144 = 0.667 sq.ft.
Fastener load = design load X tributary area = 48.3.5 X 0.667 = -30.8 pounds
The fastener bads for all other plank widths were linear interplated from the two tests based on plank width
Calculated allowable deli n load = fastener load tested condition divided by area tributary for the condition to be calculated
c
d
a
�
o
'NB@C
ca
HardiePlank Width
y c t
y m
d a Q
3 a
o v rn
.12
y m
(inches)
� 0 M
ri rn �
Lu P'
a 0 eii
a! 9
5.25
310.4
12
0.333
-103.5
-34.5
6.25
12
0.417
-80.6
-33.5
7.25
12
0.500
-65.3
-32.7
7.5
12
0.521
-62.3
-32.4
8
12
0.563
56.9
-32.0
8.25
12
0.583
-54.4
-31.8
9.25
-138.8
12
0.667
-46.3
30.8
9.5
12
0.688
44.5
-30.6
12
12
0.896
-31.6
-28:3
Table 2B, Allowable Design Loads Based on Constant Fastener Load, 4d ring shank siding nail (1.5"x0.09"x0.215"), fasteners concealed (blind nail) at 8" O.C. to WSP sheathing only
For 8.25 inch wide HardiePlank:
Design load = ultimate failure load/FOS = -152 psf/ 3 = -50.7 psf
Effective tributary = ((plank width exposed to weather X fastener spacing)/144) = ((8.25.1.25) X 8)/144 = 0.389 sq.ft.
Fastener load = design load X tributary area = -50.7 X 0.389 = -19.7 lbs
The fastener loads for all other plank width were calculated based on the same fastener load
Calculated allowable design load = fastener load tested condition divided by area tributary for the condition to be calculated
N d a
N
G
O
N
m Z'
O
J
N a
m
D) .-.
C C y
(p m
HardiePlank Width
y c E
m m�
O� v) fL
�+ m
(Inches)
l°°' ti
LL rn c
w H
❑ a
1i
5.25
8
0.222
-88.7
A9.7
6.25
8
0.278
-70.9
-19.7
7.25
8
0.333
-59.1
1 A 9.7
7.5
8
0.347
-56.7
-19.7
8
8
0.375
-52.5
-19.7
8.25
-162
8
0.389
-50.7
49.7
9.25
8
0.444
44.3
-19.7
9.5
8
0.458
43.0
-19.7
12
8
0.597
-33.0
-19.7
Table 2C, Allowable Design Loads Based on Constant Fastener Load, 4d ring shank siding nail (1.5"x0.09"x0.215"), fasteners concealed (blind nail) at 6" O.C. to WSP sheathing only
For 8.25 Inch wide HardiePlank:
Design load = ultimate failure load/FOS = -198 psf/ 3 =-50.7 psf
Effective tributary = ((plank width exposed to weather X fastener spacing)/144) = ((8.25.1.25) X 6)/144 = 0.292sq.ft.
Fastener load = design load X tributary area = -66 X 0.292 = -19.3 Ibs
The fastener loads for all other plank width were calculated based on the same fastener load
Calculated allowable design load = fastener load tested condition divided by area tributary for the condition to be calculat�
v
_
_ C
J
C N
HardiePlank Width
E
H"
w s
°D u
='
(Inches)
F 0:3
li m
W H
a 0 1
ri J
5.25
6
0.167
-115.8
-19.3
6.25
6
0.208
-92.6
-19.3
7.25
6
0.250
-77.2
-19.3
7.5
6
0.260
-74.1
-19.3
8
6
0.281
-68.6
-19.3
8.25
.198
6
0.292
-66.0
.19.3
9.25
6
0.333
57.9
-19.3
9.5
6
0.344
56.1
-19.3
12
6
0.448
43.1
1 .19.3
121
a * �
-o STATE OF
I�n�j•........
o �i 0NAL / l
RONALD 1. OGAWA ASSOCIATES, INC.
16835 ALGONQUIN STREET 9443
HUNTINGTON BEACH, CA 92649
714-292-2602
714-847-4595 FAX
PROJECT: RIO-2688-17
JAMES HARDIE BUILDING PRODUCTS, INC.
1-B88-542-7343
info(d}jameshardie.com
I
WIND LOAD PROCEDURES:
Fiber -cement siding transverse load capacity (wind load capacity) Is determined via compliance testing to transverse load national test standards. Via the transverse load testing an
allowable design load is determined based on a factor of safety of 3 applied to the ultimate test load.
I
Since the allowable design load is based on factor of safety of 3, allowable design loads on fiber -cement siding correlate directlyto required design pressures for Allowable Stress
Design, and therefore should be used with combination loading equations for Allowable Stress Design (ASD).
By using the combination loading equations for Allowable Stress Design (ASD), the tested allowable design loads for fiber -cement siding are aligned with the wind speed requirements In
ASCE 7-, l0 Figure 26.5-1A, Figure 26.5-1B. and Figure 26.5-1C.
For this (analysis, to calculate the pressures in Tables 4, 5, and 6, the load combination w11 be in accordance with ASCE 7-10 Section 2.4 combining nominal loads using allowable stress
design;, �oad combination 7. Load combination 7 uses a load factor of 0.6 applied to the wind velocity pressure.
m 1, gr0.00256* •Kn*K,*VZ
I {ref. ASCE 7-10 equation 30.3-1}
% , velocity pressure at height z
K� , velocity pressure exposure coefficient evaluated at height z
Ks , topographic factor
Kd , wind directionality factor
V , basic wind speed (3-second gust MPH) as determined from [2015 IBC, 2017 FBC] Figures 1609.3(1), (2) or (3); ASCE 7-10 Figures 26.5-1A, B,
or C
V=V,e (ref. 2015 IBC & 2017 FBC Section 1602.1 definitions)
V,t , ultimate design wind speeds (3-second gust MPH) determined from [2015 IBC, 2017 FBC] Figures 1609.3(1), (2) or (3); ASCE 7-10 Figures 26.5-
1A, B, or C
p=q,*(GCp GC,i) (ref. ASCE 7-10 equation 30.6-1)
GCp , product of external pressure coefficient and gust -effect factor
GCp , product of internal pressure coefficient and gust -effect factor
p , design pressure (PSF) for siding (allowable design load for siding)
To determfhe design pressure, substitute q, into Equation 3,
Equation 4f p=0.00256*K,*K�* VVaz*(GCo GCp,)
Allowable Stress Design, ASCE 7-10 Section 2.4.1, load combination 7,
Equation Oi 0.61) + 0.6W
D , dead load
W , wind load (load due to wind pressure)
(ref. ASCE 7-10 section 2.4.1, load combination 7)
To determine the Allowable Stress Design Pressure, apply the load factor for (wind) from Equation 4 to p (design pressure) determined from equation 4
Equation 6; I pad = 0.6*[13]
Equation 71� pp,d = 0.6*10.00256*K,*Kz*Kd*V t2*(GCp GCp ]
Equation 7 is used to populate Table 4, 5, and 6.
To determine the allowable ultimate basic wind speed for Hardie Siding in Table 7, solve Equation 7 for V..,
Equation 8, I; V g = (p„d10.6*0.00256*VKn*Kit*(GC,, GCp;))as
I
Applicable to'methods specked in Exceptions f through 3 of 12015 iBC, 2017 FBC] Section 1609.1.1., to determine the allowable nominal design wind speed (Vasd) for Hardie Siding in
Table 7, app!}%the conversion formula below,
Equation 9, V. = V,a * (0.6)Q5 (ref. 2015 IBC & 2017 FBC Section 1609.3.1)
Vp,d , Nominal design wind speed (3-second gust mph) (ref. 2015 iBC & 2017 FBC Section 1602.1)
Table 3, Coefficients and Constants used In Determining V and p,
I I
K.
Wall Zone 5
Height (it)
Exp B
Exp C
Exp D
Ks
Kd,
GC
GC
0-15
0.7
0.85
1.03
h560
1
0.85
-1.4
0.18
20 'I
0.7
0.9
1.08
1
0.85
-1.4
25 II
0.7
0.94
1.12
1
0.85
-1A
30 "1
0.7
0.98
1.16
1
0.85
-1.4
35 11
0.73
1.01
1.f9
1
0.85
-1.4
40 I
0.76
1.04
1.22
1
0.85
-1.4
N0,18
45 '1
0.785
1.065
1.245
1
0.851.4
50 I
0.811.09
1.27
1
0.85
-1.4
55 II
0.83
1.11
1.29
1
0.85
-1.4
60 I
0.85
1.13
1.31
1
0.85 1
-1.4
0.18
100
0.99
1.26
1.43
h>60
1
0.85
-1.8
0.18
OGAW4
NS
4121
-o STATE OF �•� `�
�eJ
ONA\- <"
RONALD I. OGAWA ASSOCIATES, INC.
16835 ALGONQUIN STREET #443
HUNTINGTON BEACH, CA 92649
714-292-2602
714-847-4595 FAX
PROJECT: RIO-2688-17
JAMES HARDIE BUILDING PRODUCTS, INC.
1-888-542-7343
info@jameshardie.com
Table 4, Allowable Stress Design - Component and Cladding (C&C) Pressures (PSF) to be Resisted at Various Wind Speeds - Wind Exposure Category B, .
Wind Speed (3-
second gust)
100
105
110
115
120
130
140
150
160
170
180
190
200
210
Height(ft)
B.
B
B
B
B
B
B
B
B
B
B
B
B
B
0-15
-14A
-15.9
-17.5
-19.1
-20.8
-24.4
-28.3
-32.5
-37.0
-41.7
46.8
-52.1
57.8
-63.7
20
-14A
-15.9
-17.5
-19.1
-20.8
-24.4
-28.3
-32.5
-37.0
41.7
-46.8
-52.1
-57.8
-63.7
25
-14A
-15.9
-17.5
-19.1
-20.8
-24.4
-28.3
-32.5
-37.0
41.7
46.8
-62.1
-57.8
-63.7
30
-14A
-15.9
-17.5
-19.1
-20.8
-24.4
-28.3
-32.5
-37.0
41.7
46.8
-52.1
-57.8
-63.7
35
-15A
-16.6
-18.2
-19.9
-21.7
-25.4
-29.5
-33.9
-38.6
43.5
48.8
-54A
-60.2
-66.4
40
-15.7
-17.3
-19.0
-20.7
-22.6
-26.5
-30.7
-35.3
40.1
45.3
-50.8
-56.6
-62.7
-69.1
45
-16.2
47.9
-19.6
-21A
-23.3
-27A
-31.7
-36.4
-41.5
-46.8
-52.5
-58.5
-64.8
-71.4
50
-16.7
-18A
-20.2
-22.1
-24.1
-28.2
-32.7
-37.6
42.8
48.3
-64.1
-60.3
-66.8
-73.7
55
-17.1
-18.9
-20.7
-22.6
-24.7
-28.9
-33.6
-38.5
-43.8
49.5
.55.5
'6
-61.8
-68.5
-75.5
6
-
-
-2 .
-23.2
-2 -2
- 99.6
-34.
-39.
.9
- 0.
- 8
-63.3
- 0.1
- 7.3
100
725.6
-28.2
-31.0
-33.8
-36.9
43.3
-50.2
-57.6
-65.5
774.0
82.9
-92A
-102.4
-112.9
Table 6, Allowable Stress Design - Component and Cladding (C&C) Pressures (PSF) to be Resisted at Various Wind Speeds - Wind Exposure Category C,
Wind Speed (3-
second gust)
100
105
110
115
120
130
140
150
160
170
180
190
200
210
Height (ft)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
0-15
-17.5
-19.3
-21.2
-23.2
-25.2
-29.6
-34.4
-39.5
-44.9
-50.7
-56.8
-63.3
-70.1
-77.3
20
-18.6
-20.5
-22.5
-24.6
-26.7
-31.4
-36A
41.8
-47.5
-53.7
-60.2
-67.0
-74.3
-81.9
25
-19A
-21A
-23.5
-25.6
-27.9
-32.8
-38.0
43.6
-49.6
-56.0
-62.8
-70.0
-77.6
-85.5
30
-20.2
-22.3
-24.5
-26.7
-29.1
-34.2
-39.6
-45.5
51.8
58.4
-65.5
-73.0
-80.9
-89.2
35
1 -20.8
-23.0
-25.2
-27.6
-30.0
-35.2
46.9
53.3
-60.2
-67.5
-75.2
-83.3
-91.9
40
-21.5
-23.7
-26.0
-28A
-30.9
-36.3
48.3
-64.9
-62.0
-69.5
-77A
-85.8
-94.6
45
-22.0
-24.2
-26.6
-29.1
-31.6
-37.1
99A
56.2
-63.5
-71.2
-79.3
-87.9
-96.9
50
-22.5
-24.8
-27.2
-29.7
-32A
-38.0
U44.1
50.6
57.6
-65.0
-72.9
-81.2
-89.9
-99.2
55
-22.9
-25.2
-27.7
-30.3
-33.0
-38.7
-51.5
58.6
-66.2
-74.2
-82.7
-91.6
-101.0
60
-23.3
2 .
-28.2
30.8
-33.6
39.2.
-
6 .
93.2
028
100
326
359
394
43.1
46.9
55.0
73.3
-83.4
-94.1
-105.5
-117.6
-130.3
-1 33.6
Table 6, Allowable Stress Design - Component and Cladding (C&C) Pressures (PSF) to be Resisted at Various Wind Speeds - Wind Exposure_ Category D,
Wind Speed (3-
second gust)
100
105
110
116
120
130
140
150
160
170
180
190
1 200
210
Height (it)
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0-15
721.2
-23.4
-25.7
-28.1
-30.6
-35.9
-41.6
-47.8
-54.4
-61.4
-68.8
-76.7
-85.0
-93.7
20
-22.3
-24.6
-27.0
-29.5
-32.1
-37.7
-43.7
-50.1
-57.0
-64.4
-72.2
-80A
-89.1
-98.2
25
-23.1
-25.5
-28.0
-30.6
-33.3
-39.0
-45.3
-52.0
59.1
-66.8
-74.9
-83A
-92A
-101.9
30
-23.9
-26.4
-29.0
-31.6
-34.5
40.4
-46.9
53.8
-61.3
-69.2
-77.5
-86.4
-95.7
-105.5
35
1 -24.5
-27.1
-29.7
1 -32.5
-35.3
-41.5
48.1
-55.2
-62.8
-70.9
-79.5
-88.6
-98.2
708.3
40
-25.2
-27.7
-30.5
-33.3
-36.2
-42.5
49.3
-56.6
-64.4
-72.7
-81.6
-90.9
-100.7
-111.0
45
-25.7
-28.3
-31.1
-34.0
-37.0
43.4
-50.3
-57.8
-65.7
-74.2
-83.2
-92.7
402.7
-113.3
50
-26.2
-28.9
-31.7
-34,6
-37.7
-44.3
-51.3
-58.9
-67.1
-75.7
-84.9
-94.6
-104.8
-115.5
55
-26.6
-29.3
-32.2
-35.2
-38.3
-45.0
52.2
59.9
-68.1
-76.9
-86.2
-96.1
-106.4
-117A
0
-
29.8
-32.
-36.
-38.9
45.
3.0
60.8
59.2
8 .
-9 .6
- 08.
- 9.
100
-37.0
40.8
44.7
48.9
-53.2
-62.5
-72.5
-83.2
-94.6
706.8
-1 9.8
-133A
-147.9
-163.0
Tables 4, 5, and 6 are based on ASCE 7-10 and consistent with the 2016 IBC, 2015 IRC and the 2017 Florida Building Code.
11
RONALD 1. OGAWA ASSOCIATES, INC.
16835 ALGONQUIN STREET #443
HUNTINGTON BEACH,
CA 92649
714-292-2602
714-847-4595 FAX
LMES
PROJECT: RIO-2688-17
-
Iinfo@jameshardie.com
Table 7, A
HARDIE BUILDING PRODUCTS, INC.
-888-542-7343
OGA►N,�''
lowabie Wind Speed (mph) for HardiePlank Lap Siding (Analytical Method in ASCE 7-10 Chapter30 C&C Part 1 and Par�3 • • • ° S •• �. �,
2015/BC, 2017 FBC 2015/BC, 2017 FBC \' 121 •••�
Allowable, Ultimate Allowable, Nominal
Design Wind, Speed, Design Wind, Speed,
V�ae a A6 a 0
(3-second gust h) (3-second gust mph) ` '. SG
Applicable to methods 0 •' / p (� • /' • • i
specified in 12015 IBC, Applicable to methods ^„- �nA •. ` Il v ,.� /
2017 FBC] Section specified in Exceptions 1 'C_vS • [h•�p•{ • •�C"1
1609.1.1.or' determinedby through 3cf(20151SC,
[20151BC, 2017 FBCI 2017 FBC) Section ' �e
Figures 1609.3(1), (2) or 1609.1.1.
(3).
Coefficients used
in Teble 6 calculaBons for VW,
Wind exposure tego
Wind exposure category
Siding
W
Product '
Product
Thickness
(inches)
Width
dth
(inches)
Fastener
Type
Fastener
Spadng
Frame
Type
Fastener
Spacing
(inches
Building
Heightl•Z
(feeQ
B
C
D
B
C
D
Aikwable
n
Design
g
Load
(PSF)
Exp B
EV C
Ezp D
Ka
Ka
GC,
11 G
D-15
268
243
221
207
188
171
-103.5
0.7
0.85
1.03
h!ZD
1
0.85
-1.4
0.18
20
268
236
216
207
183
167
-103.5
0.7
0.0
1.08
1
0.85
.1.4
0.18
25
268
231
212
207
179
164
1 -103.5
0.7
0.94
1.12
1
0.85
AA
0.18
No. 8 x 1-
2X4 wood
30
268
226
208
207
176
161
-103.5
0.7
0.98
1.16
1
0.86
AA
0.18
HarclaPlani
5/16
5.26
5/8" long x
0. ribbed
ribbed
waferhead
screwss
Blind
screwed
to WSP
or 20 ga.
steel
framing,
7/16" thick
WSP
sheathing
12
35
262
223
205
203
173
159
-103.5
0.73
1.01
1.19
t
o.85
-1.4
0.18
40
257
220
203
199
170
157
-lo3.5
o.76
1.o4
122
1
'0.85
-1.4
0.18
45
253
217
201
196
168
165
-103.5
0.785
1.085
1.245
1
0
0.18
50
249
215
199
193
166
154
-103.6
0.61
1.09
1.27
1
0.OMAA
5
-1.4
0.18
55
246
213
197
190
165
163
-103.5
0.83
1.11
1 1.29
1
0.85
-1.4
0.18
60
243
211
196
'188
163
152
-103.5
0.85
1.13
1.31
1
0.85
-1.4
0.18
100,
1 201
178
167
156
138
130
-1D3.5
0.99
1.28
1 1.43
h-60
1
1 D.N.
-1.8
0.18
0-15
236
214
195
183
166
151
-80.8
0.7
0.85
1 1.03
Ihs6a
1
0.85
-1.4
o.18
20
236
208
190
183
161
147
-80.6
0.7
0.9
1.08
1
0.85
-1.4
0.18
No. 8 x 1-
2X4 wood
25
236
204
187
183
158
145
-80.6
0.7
0.94
1.12
1
0.85
-1.4
0.18
30
236
200
184
183
155
142
-80.6
0.7
0.98
1.16
1
0.85
-1.4
0.18
HardiePlank
5/16
6.25
5/8" long x
0.375" HD
ribbed
waferhead
Blind
screwed
to WSP
or 20 ga.
steel
framing,
7/16" thick
12
35
231
197
181
179
152
140
-80.6
0.73
1.01
1.19
1
0.85
-1.4
0.18
40
227
194
179
176
150
139
-80.6
0.76
1.04
1.22
1
0.85
-1.4
0.18
45
223
192
177
173
148
137
-80.6
0.785
1.065
1.245
1
Y85
-1.4
0.18
screws
WSP
sheathing
50
220
189
175
170
147
136
-80.6
0.81
1.09
1.27
1
0.85
-1.4
0.18
55
217
188
174
168
145
135
-8D.6
0.83
1.11
129
t
10.851
AA
10.19
60
214
186
173
166
144
134
-80.8
0.85
1.13
1.31
1
0.85
-1.4
0.18
100
177
157
148
137
122
114
'-80.6
0.99
1.26
1.43
h>60
1
0.85
-1.8
o.t8
0-15
213
193
175
165
150
136
-65.3
0.7
0.85
1.03
h560
1
0.85
-1A
0.18
20
213
188
171
165
146
133
.65.3
0.7
0.9
1.08
1
0.85
-1A
0.18
HardiePlank
5/16
7.25
No. 8 x 1-
518" long x
0.375° HD
ribbed
waferhead
smewss
Blind
screwed
to WSP
2X4 wood
or 20 ga.
steel
framing,
7/16'thick
WSP
sheathing
12
25
213
184
168
165
142
130
-65.3
0.7
0.94
1.12
1
0.85
AA
0.18
30
213
180
165
165
139
128
-05.3
0.7
0.98
1.16
1
0.85
AA
0.18
35
208
177
163
161
137
126
65.3
0.73
1.01
1.19
1
0.65
-1.4
0.18
40
204
176
161
158
135
125
-65.3
0.76
1.D4
1.22
1
0.85
-1.4
0.18
45
201
172
159
156
134
124
-65.3
0.785
1.065
1.245
1
0.85
-1.4
0.18
50
198
170
168
153
132
122
-65.3
0.81
1.09
1.27
1
0.85
AA
0.18
55
195
169
157
151
131
121
-652
0.83
1.11
1.29
1
o.e5
AA
0.88
60
193
167
155
160
130
120
-65.3
0.85
1.13
1.31
1
0.85
-1.4
0.18
100
160
142
133
124
110
103
-65.3
0.99
126
1.43
h>60
1
0.85
-1.8
0.18
0-15
20B
188
171
161
146
133
-62.3
0.7
0.85
1.03
h580
1
0.85
-1.4
0.18
20
208
183
167
161
142
130
-623
0.7
0.9
1.08
1
0.85
-1.4
0.18
HardiePlank
5/16
7.5
No. 8 x 1-
5/8" long x
0.375" HD
ribbed
waferhead
screws a
Blind
screwed
to WSP
2X4 wood
or 20 ga.
steel
framing,
7/16" thick
WSP
sheathing
12
25
208
179
164
161
139
127
-62.3
0.7
0.94
1.12
1
0.85
-1.4
0.18
30
208
176
161
161
136 .
125
-62.3
0.7
0.98
1.16
1
0.85
AA
0.18
35
203
173
159
158
134
123
-62.3
0.73
1.01
1.19
1
0.85
-1A
0.18
40
199
170
157
154
132
122
-62.3
0.76
1.04
122
1
0.85
-1A
0.18
45
198
168
155
152
130
121
-62.3
0.785
1.065
1.245
1
0.85
-1.4
0.18
50
193 1
166
154
150
129
119
-62.3
0.81
1.09
1.27
1
0.95
-1.4
0.18
55
191
165
153
148
128
119
-62.3
0.83
1.11
129
1
0.85
-1.4
0.18
60
188
163
152
146
127
118
-62.3
0.85
1.13
1.31
1
OR-1.4
0.18
100
156
138
130
121 1
107
101
-62.3
0.99
126
1.43
h>60
1
0.85
-1.6
o.16
0-15
198
180
164
154 1
139
127
-%.9
0.7
0.86
1.03
hs60
1
0.85
AA
0.18
HardiePlank
5/16
8
No. 8 x 1-
5/8" long x
0.375" HD
fibbed
waferhead
CreWS6
Blind
screwed
to WSP
2X4 wood
or 20 ga.
steel
framing,
7116° thick
WSP
sheathing
12
20
198
175
160
164 1
136
124
-56.9
0.7
0.9
1.08
1
0.85
AA
0.18
25
198
171
157
164 1
133
122
-56.9
0.7
0.94
1.12
1
0.85
-1.4
0.18
30
198
168
154
164
130
119
-56.9
0.7
0.98
1.16
1
0.85
-1.4
0.18
35
194
165
152
151
128
118
-56.9
0.73
1.01
1.19
1
0.85
-1.4
0.18
40
190
163
150
148
126
116
-56.9
0.76
1.04
1.22
1
0.85
-1.4
0.18
45
187
161
149
145
125
115
-55.9
0.785
1.065
1.245
1
0.85
-1.4
0.18
50
184
159
147
143
123
114
-58.9
0.81
1.09
1.27
1
0.85
-1.4
0.18
55
182
158
146
141
122
113
-56.9
0.53
1.11
1.20
1
0.85
-1.4
0.18
60
180
156
145 1
139
121
112
-58.9
Q65
1.13
1.31
1
0.85
AA
0.18
100
149
132
124
115
102
96
-56.9
0.99
126
1.43
h>60 I
1 10.85
7-1.8
0.18
I
1
7
RONALD I. OGAWA ASSOCIATES, INC.
16835 ALGONQUIN STREET #443
HUNTINGTON BEACH, CA 92649
714-292-2602
714-847-4595 FAX
PROJECT: RIO-2688-17
JAMES HARDIE BUILDING PRODUCTS, INC.
1-888-542-7343
info@jameshardie.com
ppplbg''j`1.OGAh/
2015 /BC, 2017 FBC
2015IBC, 2017 FBC
$ fj �1i i
0'
Allowable, Ultimate
Design Wind, Speed,
1.5
3-second gust mph)
Allowable, Nominal
Design Wind, Speed,
45
(3-se n gust mph)
1��`}J�! E
;
\
` •� STATE OF %• cap y
v OAF •• FC 0 R p P ,.' `ti 9p�a
•....... • •'
ss�oNAL�eE� �
Applicable to methods
specified In 120151BC,
2017 FBC) Section
1609.1.1, as determined by
Applicable to methods
specified In Exceptions 1
through 3 of 12015 IBC,
120151BC, 2017 FBC)
Figures 16), (2) or
(3).
2017 FBC) Section
1609.1.1.
,
Coefficients used In Tablions for VWt
Wind exposuro
tego
Wind exposure
categoryl
Siding
K,
Product
Product
Thickness
Width
(inches)
Fastener
Type
Fastener
Spacing
Frame
Type
Fastener
Spacing
pnche)
Building
s
H(feet
B
C
D
B
C
D
Allowable
Design
Load
(PSF)
Fop B
Exp C
Exp D
Ka
K,
G
GCpl
0-15
194
176
160
160
136
124
-54.4
0.7
0.85
1.03
hs6o
1
0.85
-1.4
0.18
20
194
171
156
150
133
121
54.4
0.7
0.9
1.08
1
0.85
-1.4
0.18
25
194
168
153
150
130
119
-54A
. 0.7
0.94
1.12
1
0.85
-1A
0.18
HardiePlank
5/16
8.25
No. 8 x 1-
5/8" long x
0.375" HD
ribbed
Waferhead
Blind
screwed
to WSP
2X4 wood
or 20 ga.
steel
framing,
7/16" thick
WSP
12
30
194
164
161
150
127
117
-54A
03
0.98
1.16
1
0.85
-IA
0.1a
35
190
162
149
147
125
115
-54A
0.73
1.01
1.19
1
0.85
-1.4
0.18
40
186
159
147
144
123
114
-54.4
0.76
1.04
1.22
1
0.85
-1.4
El
45
183
157
146
142
122
113
-54.4
0.785
1.065
1.245
1
0.85
-1.4
0.18
50
180
156
144
140
121
112
-54.4
0.81
1.09
1.27
1
0:85
-1.4
0.18
scewse
sheathing
55
178
154
143
138
119
111
-54.4
0.83
1.11
1.29
1
0.85
-1.4
0.18
60
176
153
142
136
118
110
-54A
0.85
1.13
1.31
1 1
0.85
-1.4
0.18
100
146
129
121
113
100
94
-64A
0.99
126
1.43
h>60
1
0.85
-1.8
0.18
0-15
179
152
148
139
126
114
-46.3
0.7
0.85
1.03
hs60
1
0.85
-1.4
0.18
20
179
158
144
139
122
112
46.3
0.7
0.9
1.08
1
0.65
-1A
0.18
25
179
154
142
139
120
110
-46.3
0.7
0.94
1.12
1
0.65
-1A
0.18
HardlePlank
5/16
9.25
No. 8 x 1-
518" long x
.
0375" HD
ribbed
waferhead
screwse
Blind
screwed
to WSP
2X4 wood
or 20 ga.
steel
framing,
7/16" thick
WSP
sheathing
12
30
179
151
139
139
117
108
46.3
0.7
0.98
1.16
1
0,85
-1.4
0.18
35
175
149
137
136
115
106
-46.3
0.73
1.01
1.19
1
0.85
-1.4
0.18
40
172
147
136
133
114
105
�46.3
0.76
1.04
122
1
0.85
-1.4
0.18
45
169
145
134
131
112
104
-46.3
0.786
1.065
1.245
1
0.85
-1.4
0.18
50
166
143
133
129
111
103
-40.3
0.81
1.09
127
1
0.85
-1.4
0.18
55
164
142
132
127
110
102
46.3
0.83
1.11
125
1
0.65
-1.4
0.18
60
162
141
131
126
109
101
48.3
0.85
1.13
1.31
1
0.85
-1,4
0.16
100
134
119
112
104
92
87
46.3
0.99
1 126
1.43
h>60
1
10.85
-1.8
0.18
0-15
176
159
145
136
123
112
-44.5
0.7
0.85
1.03
NM
1
0.85
-1.4
0.18
20
176
155
141
136
120
109
-44.5
0.7
0.9
1.08
1
0.85
-1A
0.18
25
176
152
139
136
117
108
-44.5
0.7
0.94
1.12
1
0.85
AA
0.18
HardiePlank
5116
9.5
No. 8 x 1-
5/8' long x
0.375" HD
ribbed
waferhead
Screwsa
Blind
screwed
to WSP
2X4 wood
or 20 ga.
steel
framing,
7/16'thick
WSP
sheathing
12
30
176
1 146
136
136
116
106
-44.5
0.7
0.98
1.18
1
0.85
-1.4
0.18
35
172
1 146
135
133
113
104
-44.5
0.73
1.01
1.19
1
0.85
-1:4
0.18
40
169
144
133
131
112
103
-44.5
0.76
1.04
1.22
1
0.85
-1:4
0.18
45
166
142
132
128
110
102
-44.5
0.785
1.065
1.245
1
0.85
-1.4
0.18
50
163
141
130
126
109
101
-44.6
0.81
1.09
1.27
1
0.65
-1:4
0.18
55
161
139
129
125
108
100
-44.6
0.83
1.11
1.29
1
0.85
-1.4
0.18
60
159
138
128
123
107
99
-44.5
0.85
1.13
1.31
1
0.85
-1.4
0.18
100
132
117
-
102
91
-
-44.5
0.99
1.26
1 1.43
h>60
1
10.651
-1.8
0.18
0-15
148
134
122
115
104
94
-31.6
0.7
0.85
1.03
hs60
1
0.85
-1A
0.18
20
148
131
119
115
101
92
-31.6
0.7
0.9
1.08
1
0.85
-1:4
0.18
HardiePlank
5/16
12
No. 8 x 1-
5/8" long x
0.375" HD
wafribbed
Sckews6 e
Blind
"'ad
"'ad
WSP
2X4 wood
or 20 ga.
steel
framing,
7/16" thick
WSP
sheathing
12
25
14B
128
117
115
99
91
-31.6
0.7
0.94
1.12
1
0.85
-C4
0.18
30
148
125
'115
115
97
89
-31.6
0.7
0.98
1.16
1
0.85
-1.4
0.18
35
145
123
113
112
95
88
-31.6
0.73
1.01
1.19
1
0.85
-tAl
0.18
40
142
121
112
110
94
87
-31.6
0.76
1.04
1.22
1
0.85
-IA
0.18
45
140
120
111
108
93
86
-31.6
0.765
LOBS
1.245
1
0.85
-1.4
0.18
50
138
119
107
92
-31.6
0.81
1.09
127
1
0.85
-1.4
0.18
55
136
118
105
91
-31.6
0.83
1.11
1.29
1
0.85
-IA
0.18
60
134
116
104
90
-31.6
0.85
1.13
1.31
1
0.85
-IA
0.18
100
111
86
-31.6
0.99
126
IA3
h>80
1
0.85
-1.8
0.18
0-15
248
225
204
192
174
168
-88.7
0.7
O.a5
1.03
h560
1
0.85
-1.4
0.18
20
248
219
199
192
169
155
-88.7
0.7
0.9
1.08
1
0.85
-1A
0.18
25
248
214
196
192
166
152
-88.7
0.7
0.94
1.12
1
0.85
-1.4
D.18
HardiePlank
5/16
5.25
0.090"
shank
0.215" HD
X 1.5" long
ring shank
nail s
Blind
nailed to
WSP
2X4 wood
or 20 ga.
steel
framing,
7/16" thick
WSP
sheathing
8
30
248
209
192
192
162
149
-08.7
0.7
0.98
1.16
1
0.85
-1.4
0.18
35
243
206
190
188
160
147
-88.7
0.73
1.01
1.19
1
0.85
-1A
0.18
40
238
203
188
184
157
145
-88.7
0.76
1.04
1.22
1
0.85
AA
0.18
45
234
201
186
181
156
144
-88.7
0.785
1.065
1.245
1
0.85
-1.4
0.18
50
230
199
104
178
154
143
Be.7
0.81
1.09
127
1
0.85
-1.4
0.18
55
228
197
183
176
152
141
88.7
0.83
1.11
128
1
6.85
-1.4
0118
60
225
195
181
174
151
140
-88.7
0.85
1.13
1.31
1
0.85
-iA
0.18
100
186
1 165
155
1 144
1 128
1 120
1 -88.7
0.99
1 126
1 IA3
h>60
1
0,85
-1.8
0.1a