Loading...
HomeMy WebLinkAboutINSTALLATION OF GROUND PAN,I page I 1 OLIVER TECHNOLOGIES, INC. revision 6/07 FLORIDA INSTALLATION INSTRUCTIONS FOR THE J MODEL 1101 "V" SERIES ALL STEEL FOUNDATION SYSTEM _ SCIANNED MODEL 1101"V" (STEPS 1-15) B� LONGITUDINAL ONLY.• FOLLOW STEPS 1-9 �$. I de Counfy FOR ADDING LATERAL ARM: Follow Steps 10-15 FOR CONCRETE APPLICATIONS: Follow Steps 16-19 ENI INEERS STAMP ENGINEERS STAMP I 1. SPECI L CIRCUMSTANCES: If the following conditions occur - STOP! Contact Oliver Technologies at 1-800-284-7437 : a) Pier height exceeds 48" b) Length of home exceeds 76' c) Roof eaves exceed 16" d) Sidewall height exceed 96" e) Location is within 1500 feet of coast INSTALLATION OF GROUND PAN 2. Remov weeds and debris in an approximate two foot square to expose firm soil for each ground pan (C) . 3. Place g ound pan (C) directly below chassis I-beam . Press or drive pan firmly into soil until flush with or below soil. SPECIAL NOTE: The longitudinal 'Y brace system serves as a pier under the home and should be loaded as any other pi !I r. It is recommended that after leveling piers, and one-third inch (1/3") before home is lowered completely on to piers �17complete steps 4 through 9 below then remove jacks. 11 INSTALLATION OF LONGITUDINAL "V" BRACE SYSTEM NOTE: YVHEN INSTALLING THE LONGITUDINAL SYSTEM ONLY, A MINIMUM OF 2 SYSTEMS PER FLOOR SECTION IS REQUIRED. SOIL TEST PROBE S"OULD BE USED TO DETERMINE CORRECT TYPE OF ANCHOR PER SOIL CLASSIFICATION. IF PROBE TEST READINGS ARE BETWEEN 175 & 2�5 A 5 FOOT ANCHOR MUST BE USED. IF PROBE TEST READINGS ARE BETWEEN 276 & 350 A 4 FOOT ANCHOR MAY BE USED. USE GROUNDi ANCHORS WITH DIAGONAL TIES AND STABILIZER PLATES EVERY 5'4" . VERTICAL TIES ARE ALSO REQUIRED ON HOMES SUPPLIED WITH VERTICAL TIE CONNECTION POINTS (PER FLORIDA REG.). 4. Select �he correct square.tube brace (E) length for set - up (pier) height at support location. (The 18" tube is always used as the bottom part of the longitudinal arm). Note: Either tube can be used by itself, cut and drilled to length as long as a 40 to 45 degree angle is maintained. PIER HEIGHT 1.25" ADJUSTABLE 1.50" ADJUSTABLE roxl 45 degrees Max.) Tube Length Tube Length 22" 214 33/4" to 32 1 /4" 32" i' 18" 33" to 411' ` .... 44" .. 18" 40" to 48" 54" 18" 5. Install) (2) of the 1.50" square tubes (E {18" tube) ) into the "U" bracket (J), insert carriage bolt and leave nut loose for final adjust, ent. 6. Place I-beam connector (F) loosely on the bottom flange of the I-beam. 7. Slide) he selected 1.25" tube (E) into a 1.50" tube (E) and attach to I-beam connectors (F) and fasten loosely with bolt and nut. 8. Repeat steps 6 through 7 to create the "V" pattern of the square tubes loosely in place. The angle is not to exceed 45 degree and not below 40 degrees. 9. After aJl bolts are tightened, secure 1.25" and 1.50" tubes using four(4) 1/4"-14 x 3/4" self -tapping screws in pre -drilled holes. 11 INSTALLATION OF LATERAL TELESCOPING TRANSVERSE ARM SYSTEM THE MODEL 1101 "V" (LONGITUDINAL & LATERAL PROTECTION) ELIMINATES THE NEED FOR MOST STABILIZER PLATES & FRAME TIES. NOTE: THE USE OF THIS SYSTEM REQUIRES VERTICAL TIES SPACED AT 5'4". FOUR FOOT (4') GROUND ANCHOR MAYBE USED EXCEPT WHERE THE HOME MANUFACTURER SPECIFIES DIFFERENT. 10. Install remaining vertical tie -down straps and 4' ground anchors per home manufacturer's instructions. NOTE: Centerline ancho s to be sized according to soil torque condition. Any manufacturer's specifications for sidewall anchor loads in excess of 4,000 bs. require a V anchor per Florida Code. 11. NOTE,J Each system is required to have a frame be and stabilizer attached at each lateral arm stabilizing location. This frame tie & stabilizer plate needs to be located within 18" from of center ground pan. 12. Selec the correct square tube brace (H) length for set-up lateral transverse at support location. The lengths come in either 60" or 72"1 lengths. (With the 1.50" tube as the bottom tube, and the 1.25" tube as the inserted tube.) 13. Install the 1.50 transverse brace (H) to the ground pan connector (D) with bolt and nut. 14. Slide 11.25" transverse brace into the 1.50" brace and attach to adjacent I-beam connector ( I ) with bolt and nut. i ri Cnrn irm 1 fin" fronevaren orm fn 1 Sri" frnnevnren orm v icinn fni it /Al 1 IA" - 1A v 3/A" calf-fnnninn eerawe in nre-drlled hninc OLIVER TECHNOLOGIES, INC. 1-800-284-7437 02/02/2018 Telephone: 931 796 4555 Fax: 931796 8811 www.olivertechnologies.com page 2 INSTALLATION USING CONCRETE RUNNER / FOOTER 'revision 6/07 16. A cone ete runner, footer or slab may be used in place of the steel ground pan. a) The�concrete shall be minimum 2500 psi mix b) A concrete runner may be either longitudinal or transverse, and must be a minimum of 8" deep with a minimum width of 16 inches longitudinally or 18 inches transverse to allow proper distance between the concrete bolt and the edge of the concrete (see below). c) Footers must have minimum surface area of 441 sq. in. (i.e. 21" square), and must be a minimum of 8" deep. d) If a full slab is used, the depth must be a 4" minimum at system bracket location, all other specifications must be per local jurisdiction. Speicial inspection of the system bracket installation is not required.. Footers must allow for at least 4" from the concrete bolt to the edge Of the concrete. NOTE: The bottom of all footings, pads, slabs and runners must be per local jurisdiction. LONGITUDINAL: (Model 1101 LC "V") 17. When 1 sing Part # 1101-W-CPCA (wetsetl. simply install the bracket in runner/footer OR When installing in cured concrete use Part # 101-13'CPCA d set . The 1101 (dryset) CA bracket is attached to the concrete using (2) 5/8"x3" concrete wedge bolts (Simpson part # S1623 OH 5/8" X 3" or Powers equivalent). Place the CA bracket in desired location. Mark bolt hole locations, then using a 5/8" diameter masonry bit, drill a hole to a minimum depth of 3". Make sure all dust and concrete is blown out of the holes. Place wedge bolts into drilled holes, then place 1101 (dry set) CA bracket onto wedge bolts and start wedge bolt nuts. Take a hammer and lightly drive the wedge bolts down 6 hitting the nut (making sure not to hit the top of threads on bolt). The sleeve of concrete wedge bolt needs to be at or below the top of cone ete. Complete by tightening nuts. LATERAL:I(Model 1101 TC "V") 18. For wet set (part # 1101-W-TACA) installation simply install the anchor bolt into runner/footer. For dry set installation (part # 1101-D-TACA)- mark dolt hole locations, then using a 5/8" diam. masonry bit, drill a hole to a minimum depth of 3". Make sure all dust and concrete is blown but of the hole. Place wedge bolts (Simpson part #S162300H 5/8" X 3" or Powers equivalent) into (D) concrete dry transverse connector and into drilled hole. If needed, take a hammer and lightly drive the wedge bolts down by hitting the nut (making sure not to hit the top of threads on bolt), then remove the nut. The sleeve of concrete wedge bolt needs to be at or below the top of concrete. 19. When sing part # 1101 CVW (wetset) or 1101 CVD (dryset), install per steps 17 & 18. Notes: It: 1. LENGTH OF HOUSE IS THE ACTUAL BOX SIZE 2. • = STABILIZER PLATEAND FRAME TIE LOCATION (reeds b be locabrd within 18 inches ofcenberdgla nd pen oraxnehe) 3. ED= LOCATION OF LONGrUDINAL BRACING ONLY 4. �` TRANSVERSE & LONGf1UDINAL LOCATIONS ALL WIDTHS; • LENGTHS UP TO 52' • • ALL WIDTHS; AND LENGTHS OVER 52' TO 80' I�I • C HOMES WITH°5/12,ROOF PITCH REQUIRE- •PER FLORIDA REGULATIONS 6 systems for home lengths up to 52' and 8 systems for, homes over 52' and up. 80' One stabilizer plate AWN&ate tie required at each lateral bracing system. hors ma$ be used in ail toons except where re man � urers sped lions forsidewall straps In exce� of 4,000 lbs. ,I Transverse arm I beam se Ioc34ions require a 5' connector 11 hor. Per Florida Code. / <H ' Transverse arm Top (12T) bottom (1.5' ) 77z Z�77_ � Pan transverse connectors E o Brace Tub Top (125) Bottom (1.5") Ground Pan I Longitud dry concrete bracket part # 1101 D-CPCA I I Wet brae et part # 1101 W-C PCA not shown I rida appro ed 4' ground :hors may be used in al] aeons exkbpt where home nufacturerri specifications sidewall snaps are in ass of4.090 tbs. These ations require a 5' anchor. r Florida .Code. U bracket transverse connectors F :1r brace I beam connectors J ground Pan _-� V Bracket page 3 revision 6107 C = GROUND PAN D = GROUND PAN CONNECTOR U BRACKETS TRANSVERSE E = TELESCOPING V BRACE TUBE ASSEMBLY W/ 1.5 BOT- TOM TUBE AND 1.25 TUBE INSERT F = "W BRACE 1-BEAM CONNEC- TORS ASSEMBLY H = TELESCOPING TRANSVERSE ARM ASSEMBLY I = TRANSVERSE ARM I -BEAM CONNECTOR J= V PAN BRACKET Model # 1101 "V" I -Beam '_21 C' amp Alternate Hole for (1) PerAssembly Narrower Beam Flange Grade 5 -1/2" x 1- Carriage Bolt 8 Nut � Grade 5/2 21/2" Carriage'8�11 d; Nut 1-BEA� CONNECTOR BRACKET 1 Transverse armI beam connector i� <H ' Transverse arm Top (1.25")/ ,bottom (1.5- E Ir BraceTubyf/ Top (1.25' Bottom (1.5") Concrete Footed Runner F -V brace 1 beam connectors J Concrete _ter 'V° Bracket a Model 1101 CVD Model 1101 CVW -,.�.. I ot shown C = CONCRETE FOOTERIRUNNER D = CONCRETE U BRACKETTRANSVERSE ciCONNECTOR (connects with grade 5 -12- x 2 12— carriage bolt & nut) E = TELESCOPING V BRACE TUBE ASSEMBLY W/ 1.5 BOT- TOM TUBE AND 1.25 TUBE INSERT F = -ir BRACE I -BEAM CONNECTORASSEMBLY (connects with grade 5 -112" x 47 carriage bolt & nut) H = TELESCOPING TRANSVERSE ARM ASSEMBLY 1 = TRANSVERSE ARM I -BEAM CONNECTOR (connects with grade 5 -12- x 210— carriage bolt & nut) J= CONCRETE "W BRACKET (connects with grade 5 -1127 x 4" carriage bolt & nut) Model # 1101 C "V" i OLIVER TECHNOLOGIES, INC. Telephone: 931796 4555 1-800 284-7437 Fax: 931796 8811 02/02/2018 www.ofivertechnologies.com 4 VERTICAL VINYL $RIRTING ( components & installation I . I IWAL-L { I - ...ATTACHED. UAT14 �rKH SCR&wS Ik,"APAgr I ; I 'TbP_�'ROry-T FLOOR SNAPSJ#aro "TaP BACK ti'069'i ScRisw5 AND PAmEL C%rTS i BLOCK "5uP?O 3.9 k miss me Fool •• SE UREb dF vENTtLA'rADW ^ _� 'MP. BACK Apo S&TTOM R,%, � V.W INCH Sc�EaS rAtt.01lNEItS a46AGCEsd;g94.E ev f?f--N UVG ' by V-iVotiT 4uA PULMAJ x OF ajw P'A. ME-4 .B�D'ryro ACkt'TAGHEC TO GRouk,4 VJ174 ' nea CaALIVAN17-66: NA+L 19 "oc (IF 50IL l5 SANOy'TEN Qjti,noc3 i I I I I !'I 2/02/2018 Certification of Engineered Flood Openings In accordance with NFIP, FEMA TB 1-08, and ASCE/ U- 4.24-05 I' hereby certify that the Crawl Space Door Systems flood vents 8160,1220CS,1232CS,16160,1624CS, 1632C5, 2032CS, 2424CS, and 2436CS are designed'in accordance with the requirements of the NFIP "Flood Insurance Manual" (2011) to provide automatic equalizatlon of hydrostatic flood forces by allowing for the entry and exit of floodwaters, when properly Installed and sized as set forth filelow. This certification follows the design requirements and specifications established in FEMA Technical Bulletin 1-08, "OpenlPgs in Foundation Walls and Walls of Enclosures Below Elevated Buildings in Special Flood Hazard Areas", and the ASCE Standard for "Flood Resistant Design and Construction" (ASCE/SEI 24-05). The actual vent opening measurements were determined and cel tifled by Mr. Christopher Mark Loney, Virginia PE No. 029000. Calculations are based on the spreadsheet formulas, and "Revie%% of certification of Engineered Flood Openings, dated January 16, 2012" prepared by Dr. Georg Reichard, Associate Professor of Buil i ing Construction, Virginia Tech. Design. Chatacteristics Section 2.6.2.2 of ASCE 24 provides an equation to determine the required net area,of engineered openings (A,) for a given enclosed area (l� ). This equation is based- on the hydraulic formula for the flow rate across sharp edged orifices. I have utilized this equation to calc late 1) the respected flow rate through the individual openings between louvers; 2) the flow rate through the'main frame opening in case the louver Is blown out during a flood event; and 3) the flow rate of water flowing through louver blades following hydraut is short tube theory. The ultimate maximum total enclosed area (Aj that can be serviced by a single vent has then been determ ned by utilizing the lowest flow rate of the three assessed scenarios for each vent and is listed in Table 1. These %alues are based on the following assumptions: • In Il�bsence of reliable data, the rates of rise and fall .have been aspmed with 5 feet/hour; • Th.6 (maximum) difference between the exterior and interior flAdwater •levels has been assumed with 1 foot during base fl 1I d conditions; • A actor of safety of 5 has been assumed, which is consistent with design pr4ctices related to protection of life and property; • Th�net area of openings (A,) as provided by the manufacturer. Installatiion ,Requirements and Limitations This c' rtification will be voided if the following installation requir fnents and limitations are not enforced: • Thl re shall be a minimum of two openings on different sides of Table 1 Maximum total enclosed area (Ae) that can be each enclosed area, served by each individual model based ''on the • ThIvet bottom of each required opening shall be no more than lft given net area of engineered openings (k) abIhe adjacent ground level; • No temporary (e.g. during cold weather) or permanent solid cover may be placed into or over the flood vent that would block th' automatic entry or exit of floodwaters at any time; • Wiere analysis indicates 'rates of rise and fall greater than.5 ft/hr, the total enciosed.area as given in Table 1 shall be reduced accordingly to accountfor the higher rates.of rise and fall. . ") Model H x W [in] A. [ins] A. [fee ❑ 816CS 8 x 16 106 265 ❑ .1220CS 12 x 20 237 Soo 0 1232CS 12 x 32 306 645 ❑ 1616CS 16 x 16 184 395 ❑ 1624CS 16 x 24 312 670 ❑ 1632CS 16 x 32 408 835 ❑ 2032Cs 20 x 32 630 1240 0 2424CS 24 x 24 570 1730 El 2436CS 24 x 36 852 1765 Professional �� �� ���,.; N d me, Tttle Steve A. 6eci,. President, Geci & Associates Engineers, Inc. ` ,�F, •..;• G�Vi� G;EN�C '.�j �,� • N0. 33658 • .. • ; STATE OF Address 2950 N 12`h'Avenue, Pensacola, FL 32503 `� License Florida Professional Engineer, Lic . e o. 3658 ignature �� • hdentfiGation _of tYte Building and Installed Flood Vents (By Others.) The food vent models marked in Table 1*) are beinginstalled at the following building: Building Address I PROJECT RIO-2688-17 ENGINEERING EVALUATION REPORT FOR ATTACHING JAMES HARDIE® BRAND FIBER -CEMENT PLANKS TO WOOD OR METAL FRAMED WALLS WITH VARIOUS FASTENERS JAMES HARDIE BUILDING PRODUCTS, INC. 10901 ELM AVENUE FONTANA, CA 92337 TABLE OF CONTENTS PAGE :OVER PAGE 1 :VALUATION SUBJECT 2 :VALUATION SCOPE 2 :VALUATION PURPOSE 2 tEFERENCE REPORTS 2 'EST RESULTS 3 ABLE 1, RESULTS OF TRANSVERSE LOAD TESTING 3 ABLE 2A THROUGH TABLE 2C, ALLOWABLE DESIGN LOADS BY PLANK WIDTH 4 )ESIGN WIND LOAD PROCEDURES 5 ABLE 3, COEFFICIENTS AND CONSTANTS USED IN DETERMINING V AND p 5 'ABLE 4, ALLOWABLE STRESS DESIGN C&C PRESSURES EXPOSURE B 6 ABLE 5, ALLOWABLE STRESS DESIGN C&C PRESSURES EXPOSURE C 6 ABLE 6, ALLOWABLE STRESS DESIGN C&C PRESSURES EXPOSURE D 6 ABLE 7, ALLOWABLE WIND SPEED (MPH) FOR HARDIEPLANK SIDING 7-12 IMITATIONS OF USE 12 AS PRODUCT EVALUATOR, THE UNDERSIGNED CERTIFIES THAT THE LISTED PRODUCTS ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ASCE 7 -10, THE 2017 FLORIDA BUILDING CODE, AND THE 2015 INTERNATIONAL BUILDING CODE. PREPARED BY: RONALD I. OGAWA & ASSOCIATES, INC. 16835 ALGONQUIN STREET #443 HUNTINGTON BEACH, CA 92649 714-292-2602 714-847-4595 FAX 3 FILE COPY RONALD I. OGAWA ASSOCIATES, INC. 16835 ALGONQUIN STREET #443 HUNTINGTON BEACH, CA 92649 714-292-2602 714-847-4695 FAX PROJECT: RIO-2688-17 JAMES HARDIE BUILDING PRODUCTS, INC. 1-888542-7343 info@jameshardie.com EVALUATION SUBJECT HarcllePlank® Lap Siding James Hardie Product Trade Names covered in this evaluation: HardiePlank® Lap Siding, CemPlanW Siding, Preva!P Lap Siding EVALUATION SCOPE: ASCE 7-10 2017 Florida Building Code 2015International Building Code® EVALUATION PURPOSE: This analysis is to determine the ma)dmum design 3-second gust wind speed to be resisted by an assembly of HardiePlank (CemPlank, Prevail Lap) siding fastened to wood or metal framing with nails or screws. REFERENCE REPORTS: 1. Intertek Report 3148104000-002, Transverse load testing on HardiePlank and HardlePanel Fiber -Cement panels 2. Intertek Report 100717048COQ-003, Transverse load testing on HardiePlank and HardieShingle 94i1i�\ OGAVV'�''s� w o _ FssfO�A�- - o 2 RONALD I. OGAWA ASSOCIATES, INC. 16835 ALGONQUIN STREET #443 HUNTINGTON BEACH, CA 92649 714-292-2602 714-847-4595 FAX PROJECT: RIO-26BB-17 JAMES HARDIE BUILDING PRODUCTS, INC. 1-888-542-7343 info@jameshardie.com RESULTS: Table 1 { Results of Transverse Load Testing Report Number 3148104COQ-002 3148104COQ•002 100717048COQ-0D3 100717048COQ-003 Test Agency Intertek Intertek Intertek Intertek Thickness (In.) 0.3125 0.3125 0.3125 0.3125 Width (in.) 5.25 9.25 8.25 8.25 Frame Type 11 Wood 2° x 4°SPF w/ 7116' OSB sheathing Wood 2" x 4' SPF w/ 7/16" OSB sheathing Wood 2' x 4" SPF w/ 7/16" OSB sheathing Wood 2" x 4" SPF wl7/16" OSB sheathing Frame Spacing (in.) 12 12 8 6 Fastener Type #8 waferhead screw, 1 5/8" x 0.375" HD #8 waferhead screw, 1 5/8" x 0.375" HD 4d ring shank siding 1.5" x 0.09D' x 0.215" 4d ring shank siding 1.5" x 0.090" x 0.215" FastenerILength (inches) 0.625 1.625 1.5 1.6 Fastening Method Blind nailed to OSB Blind nailed to OSB Blind nailed to OSB Blind nailed to OSB Ultmate'Load (psf) 310.4 138.8 152 198 Design Load 303.5 46.3 50.7 66.0 ENective'Tributa Area 0.333 0.667 0.389 0.292 Fastener, Load , as tested (Ibffestener) 34.5 30.8 19J 19.3 Adjusted 'yW.'ithdrawal design load (lb/fastencr) , W I' 35.6 35.6 Net Fast er Penetration (in.), P 0.437 OA37 Wood Sp ciflc Gravity, G 0.70 0.70 Nail Shank Diameter (in.), D 0.090 0.090 Withdrawal design value per NDS 2015 dr ESR-1539 (lbin. penetration), IN 50.9 50.9 ;alculated fastener vAthdrawal load is compared with the ast result and the more conservative one will be used. 7. Pmowaore design load is determined from ultimate load divided by a factor of safety of 3. 2. HardiePlank Siding complies with ASTM C1186, Standard Specification for Grade 11, Type A Non -asbestos Fiber -Cement Flat Sheets. 3. An equil�alent specific gravity of 0.70 for ring shank nails installed on OSB is recommended by APATT-039C. 4. Calcutatgd fastener withdrawal load is compared with the test result, and then the more conservative one will be used. For all cases In the table, the adjusted withdrawal design value, W. is calculated as W=CD•W•P Where, i) CD = told duration factor per NDS 2015 Table 2.3.2 for wind/earthquake load = 1.6 W = withdrawal design value, calculated per NDS-2016 or ESR-1539, whichever applicable P - fastjener embedment depth, in. When nOshank, D, 2 0.099 inch but 5 0.375 inch for smooth shank nails. NDS-2015 equation (11.2-3) is used to calculate withdrawal design value W = 138D' G(5/2)' D Where, G = wood specific gravity per Table 11.3.3A D = nail shank diameter, in. When nail (shank, D, is less than 0.099 inch, or in the case of ring shank nails, the withdrawal design values were obtained from ICC-ES ESR-1539 Table 2. 3 RONALD I. OGAWA ASSOCIATES, INC. 16835 ALGONQUIN STREET #443 HUNTINGTON BEACH, CA 92649 714-292-2602 714-847-4595 FAX PROJECT: RIO-2688-17 JAMES HARDIE BUILDING PRODUCTS, INC. 1-888-542-7343 info@jameshardie.com For Table 2A to 2C the designs loads will be calculated by proportioning the tributary area to each fastener, thereby design load to each fastener will be kept constant. By doing so, the allowable design load for various HardiePlank widths and stud spacing will be determined. Table 2A, Allowable Design Loads Based on Constant Fastener Load, #8 wafer head screw x 0.375" HD, fasteners concealed (blind screw) at 12" O.C. to WSP sheathing only For 5.25 inch wide HardiePlank: Design load = ultimate failure load/FOS = -310.4 psf/ 3 = -103.5 psf Effective tributary = ((plank width exposed to weather X fastener spacing)/144) = ((5.25-1.25) X 12)/144 = 0.333 sq.ft. Fastener load = design load X tributary area = -103.5 X 0.333 = -34.6 pounds For 9.25 inch wide HardiePlank: Design load = ultimate failure load/FOS=-138.8 psf/ 3 = -46.3 psf Effective tributary - ((plank width exposed to weather X fastener spacing)/144) = ((9.25-1.25) X 12)/144 = 0.667 sq.ft. Fastener load = design load X tributary area = 48.3.5 X 0.667 = -30.8 pounds The fastener bads for all other plank widths were linear interplated from the two tests based on plank width Calculated allowable deli n load = fastener load tested condition divided by area tributary for the condition to be calculated c d a � o 'NB@C ca HardiePlank Width y c t y m d a Q 3 a o v rn .12 y m (inches) � 0 M ri rn � Lu P' a 0 eii a! 9 5.25 310.4 12 0.333 -103.5 -34.5 6.25 12 0.417 -80.6 -33.5 7.25 12 0.500 -65.3 -32.7 7.5 12 0.521 -62.3 -32.4 8 12 0.563 56.9 -32.0 8.25 12 0.583 -54.4 -31.8 9.25 -138.8 12 0.667 -46.3 30.8 9.5 12 0.688 44.5 -30.6 12 12 0.896 -31.6 -28:3 Table 2B, Allowable Design Loads Based on Constant Fastener Load, 4d ring shank siding nail (1.5"x0.09"x0.215"), fasteners concealed (blind nail) at 8" O.C. to WSP sheathing only For 8.25 inch wide HardiePlank: Design load = ultimate failure load/FOS = -152 psf/ 3 = -50.7 psf Effective tributary = ((plank width exposed to weather X fastener spacing)/144) = ((8.25.1.25) X 8)/144 = 0.389 sq.ft. Fastener load = design load X tributary area = -50.7 X 0.389 = -19.7 lbs The fastener loads for all other plank width were calculated based on the same fastener load Calculated allowable design load = fastener load tested condition divided by area tributary for the condition to be calculated N d a N G O N m Z' O J N a m D) .-. C C y (p m HardiePlank Width y c E m m� O� v) fL �+ m (Inches) l°°' ti LL rn c w H ❑ a 1i 5.25 8 0.222 -88.7 A9.7 6.25 8 0.278 -70.9 -19.7 7.25 8 0.333 -59.1 1 A 9.7 7.5 8 0.347 -56.7 -19.7 8 8 0.375 -52.5 -19.7 8.25 -162 8 0.389 -50.7 49.7 9.25 8 0.444 44.3 -19.7 9.5 8 0.458 43.0 -19.7 12 8 0.597 -33.0 -19.7 Table 2C, Allowable Design Loads Based on Constant Fastener Load, 4d ring shank siding nail (1.5"x0.09"x0.215"), fasteners concealed (blind nail) at 6" O.C. to WSP sheathing only For 8.25 Inch wide HardiePlank: Design load = ultimate failure load/FOS = -198 psf/ 3 =-50.7 psf Effective tributary = ((plank width exposed to weather X fastener spacing)/144) = ((8.25.1.25) X 6)/144 = 0.292sq.ft. Fastener load = design load X tributary area = -66 X 0.292 = -19.3 Ibs The fastener loads for all other plank width were calculated based on the same fastener load Calculated allowable design load = fastener load tested condition divided by area tributary for the condition to be calculat� v _ _ C J C N HardiePlank Width E H" w s °D u =' (Inches) F 0:3 li m W H a 0 1 ri J 5.25 6 0.167 -115.8 -19.3 6.25 6 0.208 -92.6 -19.3 7.25 6 0.250 -77.2 -19.3 7.5 6 0.260 -74.1 -19.3 8 6 0.281 -68.6 -19.3 8.25 .198 6 0.292 -66.0 .19.3 9.25 6 0.333 57.9 -19.3 9.5 6 0.344 56.1 -19.3 12 6 0.448 43.1 1 .19.3 121 a * � -o STATE OF I�n�j•........ o �i 0NAL / l RONALD 1. OGAWA ASSOCIATES, INC. 16835 ALGONQUIN STREET 9443 HUNTINGTON BEACH, CA 92649 714-292-2602 714-847-4595 FAX PROJECT: RIO-2688-17 JAMES HARDIE BUILDING PRODUCTS, INC. 1-B88-542-7343 info(d}jameshardie.com I WIND LOAD PROCEDURES: Fiber -cement siding transverse load capacity (wind load capacity) Is determined via compliance testing to transverse load national test standards. Via the transverse load testing an allowable design load is determined based on a factor of safety of 3 applied to the ultimate test load. I Since the allowable design load is based on factor of safety of 3, allowable design loads on fiber -cement siding correlate directlyto required design pressures for Allowable Stress Design, and therefore should be used with combination loading equations for Allowable Stress Design (ASD). By using the combination loading equations for Allowable Stress Design (ASD), the tested allowable design loads for fiber -cement siding are aligned with the wind speed requirements In ASCE 7-, l0 Figure 26.5-1A, Figure 26.5-1B. and Figure 26.5-1C. For this (analysis, to calculate the pressures in Tables 4, 5, and 6, the load combination w11 be in accordance with ASCE 7-10 Section 2.4 combining nominal loads using allowable stress design;, �oad combination 7. Load combination 7 uses a load factor of 0.6 applied to the wind velocity pressure. m 1, gr0.00256* •Kn*K,*VZ I {ref. ASCE 7-10 equation 30.3-1} % , velocity pressure at height z K� , velocity pressure exposure coefficient evaluated at height z Ks , topographic factor Kd , wind directionality factor V , basic wind speed (3-second gust MPH) as determined from [2015 IBC, 2017 FBC] Figures 1609.3(1), (2) or (3); ASCE 7-10 Figures 26.5-1A, B, or C V=V,e (ref. 2015 IBC & 2017 FBC Section 1602.1 definitions) V,t , ultimate design wind speeds (3-second gust MPH) determined from [2015 IBC, 2017 FBC] Figures 1609.3(1), (2) or (3); ASCE 7-10 Figures 26.5- 1A, B, or C p=q,*(GCp GC,i) (ref. ASCE 7-10 equation 30.6-1) GCp , product of external pressure coefficient and gust -effect factor GCp , product of internal pressure coefficient and gust -effect factor p , design pressure (PSF) for siding (allowable design load for siding) To determfhe design pressure, substitute q, into Equation 3, Equation 4f p=0.00256*K,*K�* VVaz*(GCo GCp,) Allowable Stress Design, ASCE 7-10 Section 2.4.1, load combination 7, Equation Oi 0.61) + 0.6W D , dead load W , wind load (load due to wind pressure) (ref. ASCE 7-10 section 2.4.1, load combination 7) To determine the Allowable Stress Design Pressure, apply the load factor for (wind) from Equation 4 to p (design pressure) determined from equation 4 Equation 6; I pad = 0.6*[13] Equation 71� pp,d = 0.6*10.00256*K,*Kz*Kd*V t2*(GCp GCp ] Equation 7 is used to populate Table 4, 5, and 6. To determine the allowable ultimate basic wind speed for Hardie Siding in Table 7, solve Equation 7 for V.., Equation 8, I; V g = (p„d10.6*0.00256*VKn*Kit*(GC,, GCp;))as I Applicable to'methods specked in Exceptions f through 3 of 12015 iBC, 2017 FBC] Section 1609.1.1., to determine the allowable nominal design wind speed (Vasd) for Hardie Siding in Table 7, app!}%the conversion formula below, Equation 9, V. = V,a * (0.6)Q5 (ref. 2015 IBC & 2017 FBC Section 1609.3.1) Vp,d , Nominal design wind speed (3-second gust mph) (ref. 2015 iBC & 2017 FBC Section 1602.1) Table 3, Coefficients and Constants used In Determining V and p, I I K. Wall Zone 5 Height (it) Exp B Exp C Exp D Ks Kd, GC GC 0-15 0.7 0.85 1.03 h560 1 0.85 -1.4 0.18 20 'I 0.7 0.9 1.08 1 0.85 -1.4 25 II 0.7 0.94 1.12 1 0.85 -1A 30 "1 0.7 0.98 1.16 1 0.85 -1.4 35 11 0.73 1.01 1.f9 1 0.85 -1.4 40 I 0.76 1.04 1.22 1 0.85 -1.4 N0,18 45 '1 0.785 1.065 1.245 1 0.851.4 50 I 0.811.09 1.27 1 0.85 -1.4 55 II 0.83 1.11 1.29 1 0.85 -1.4 60 I 0.85 1.13 1.31 1 0.85 1 -1.4 0.18 100 0.99 1.26 1.43 h>60 1 0.85 -1.8 0.18 OGAW4 NS 4121 -o STATE OF �•� `� �eJ ONA\- <" RONALD I. OGAWA ASSOCIATES, INC. 16835 ALGONQUIN STREET #443 HUNTINGTON BEACH, CA 92649 714-292-2602 714-847-4595 FAX PROJECT: RIO-2688-17 JAMES HARDIE BUILDING PRODUCTS, INC. 1-888-542-7343 info@jameshardie.com Table 4, Allowable Stress Design - Component and Cladding (C&C) Pressures (PSF) to be Resisted at Various Wind Speeds - Wind Exposure Category B, . Wind Speed (3- second gust) 100 105 110 115 120 130 140 150 160 170 180 190 200 210 Height(ft) B. B B B B B B B B B B B B B 0-15 -14A -15.9 -17.5 -19.1 -20.8 -24.4 -28.3 -32.5 -37.0 -41.7 46.8 -52.1 57.8 -63.7 20 -14A -15.9 -17.5 -19.1 -20.8 -24.4 -28.3 -32.5 -37.0 41.7 -46.8 -52.1 -57.8 -63.7 25 -14A -15.9 -17.5 -19.1 -20.8 -24.4 -28.3 -32.5 -37.0 41.7 46.8 -62.1 -57.8 -63.7 30 -14A -15.9 -17.5 -19.1 -20.8 -24.4 -28.3 -32.5 -37.0 41.7 46.8 -52.1 -57.8 -63.7 35 -15A -16.6 -18.2 -19.9 -21.7 -25.4 -29.5 -33.9 -38.6 43.5 48.8 -54A -60.2 -66.4 40 -15.7 -17.3 -19.0 -20.7 -22.6 -26.5 -30.7 -35.3 40.1 45.3 -50.8 -56.6 -62.7 -69.1 45 -16.2 47.9 -19.6 -21A -23.3 -27A -31.7 -36.4 -41.5 -46.8 -52.5 -58.5 -64.8 -71.4 50 -16.7 -18A -20.2 -22.1 -24.1 -28.2 -32.7 -37.6 42.8 48.3 -64.1 -60.3 -66.8 -73.7 55 -17.1 -18.9 -20.7 -22.6 -24.7 -28.9 -33.6 -38.5 -43.8 49.5 .55.5 '6 -61.8 -68.5 -75.5 6 - - -2 . -23.2 -2 -2 - 99.6 -34. -39. .9 - 0. - 8 -63.3 - 0.1 - 7.3 100 725.6 -28.2 -31.0 -33.8 -36.9 43.3 -50.2 -57.6 -65.5 774.0 82.9 -92A -102.4 -112.9 Table 6, Allowable Stress Design - Component and Cladding (C&C) Pressures (PSF) to be Resisted at Various Wind Speeds - Wind Exposure Category C, Wind Speed (3- second gust) 100 105 110 115 120 130 140 150 160 170 180 190 200 210 Height (ft) C C C C C C C C C C C C C C 0-15 -17.5 -19.3 -21.2 -23.2 -25.2 -29.6 -34.4 -39.5 -44.9 -50.7 -56.8 -63.3 -70.1 -77.3 20 -18.6 -20.5 -22.5 -24.6 -26.7 -31.4 -36A 41.8 -47.5 -53.7 -60.2 -67.0 -74.3 -81.9 25 -19A -21A -23.5 -25.6 -27.9 -32.8 -38.0 43.6 -49.6 -56.0 -62.8 -70.0 -77.6 -85.5 30 -20.2 -22.3 -24.5 -26.7 -29.1 -34.2 -39.6 -45.5 51.8 58.4 -65.5 -73.0 -80.9 -89.2 35 1 -20.8 -23.0 -25.2 -27.6 -30.0 -35.2 46.9 53.3 -60.2 -67.5 -75.2 -83.3 -91.9 40 -21.5 -23.7 -26.0 -28A -30.9 -36.3 48.3 -64.9 -62.0 -69.5 -77A -85.8 -94.6 45 -22.0 -24.2 -26.6 -29.1 -31.6 -37.1 99A 56.2 -63.5 -71.2 -79.3 -87.9 -96.9 50 -22.5 -24.8 -27.2 -29.7 -32A -38.0 U44.1 50.6 57.6 -65.0 -72.9 -81.2 -89.9 -99.2 55 -22.9 -25.2 -27.7 -30.3 -33.0 -38.7 -51.5 58.6 -66.2 -74.2 -82.7 -91.6 -101.0 60 -23.3 2 . -28.2 30.8 -33.6 39.2. - 6 . 93.2 028 100 326 359 394 43.1 46.9 55.0 73.3 -83.4 -94.1 -105.5 -117.6 -130.3 -1 33.6 Table 6, Allowable Stress Design - Component and Cladding (C&C) Pressures (PSF) to be Resisted at Various Wind Speeds - Wind Exposure_ Category D, Wind Speed (3- second gust) 100 105 110 116 120 130 140 150 160 170 180 190 1 200 210 Height (it) D D D D D D D D D D D D D D 0-15 721.2 -23.4 -25.7 -28.1 -30.6 -35.9 -41.6 -47.8 -54.4 -61.4 -68.8 -76.7 -85.0 -93.7 20 -22.3 -24.6 -27.0 -29.5 -32.1 -37.7 -43.7 -50.1 -57.0 -64.4 -72.2 -80A -89.1 -98.2 25 -23.1 -25.5 -28.0 -30.6 -33.3 -39.0 -45.3 -52.0 59.1 -66.8 -74.9 -83A -92A -101.9 30 -23.9 -26.4 -29.0 -31.6 -34.5 40.4 -46.9 53.8 -61.3 -69.2 -77.5 -86.4 -95.7 -105.5 35 1 -24.5 -27.1 -29.7 1 -32.5 -35.3 -41.5 48.1 -55.2 -62.8 -70.9 -79.5 -88.6 -98.2 708.3 40 -25.2 -27.7 -30.5 -33.3 -36.2 -42.5 49.3 -56.6 -64.4 -72.7 -81.6 -90.9 -100.7 -111.0 45 -25.7 -28.3 -31.1 -34.0 -37.0 43.4 -50.3 -57.8 -65.7 -74.2 -83.2 -92.7 402.7 -113.3 50 -26.2 -28.9 -31.7 -34,6 -37.7 -44.3 -51.3 -58.9 -67.1 -75.7 -84.9 -94.6 -104.8 -115.5 55 -26.6 -29.3 -32.2 -35.2 -38.3 -45.0 52.2 59.9 -68.1 -76.9 -86.2 -96.1 -106.4 -117A 0 - 29.8 -32. -36. -38.9 45. 3.0 60.8 59.2 8 . -9 .6 - 08. - 9. 100 -37.0 40.8 44.7 48.9 -53.2 -62.5 -72.5 -83.2 -94.6 706.8 -1 9.8 -133A -147.9 -163.0 Tables 4, 5, and 6 are based on ASCE 7-10 and consistent with the 2016 IBC, 2015 IRC and the 2017 Florida Building Code. 11 RONALD 1. OGAWA ASSOCIATES, INC. 16835 ALGONQUIN STREET #443 HUNTINGTON BEACH, CA 92649 714-292-2602 714-847-4595 FAX LMES PROJECT: RIO-2688-17 - Iinfo@jameshardie.com Table 7, A HARDIE BUILDING PRODUCTS, INC. -888-542-7343 OGA►N,�'' lowabie Wind Speed (mph) for HardiePlank Lap Siding (Analytical Method in ASCE 7-10 Chapter30 C&C Part 1 and Par�3 • • • ° S •• �. �, 2015/BC, 2017 FBC 2015/BC, 2017 FBC \' 121 •••� Allowable, Ultimate Allowable, Nominal Design Wind, Speed, Design Wind, Speed, V�ae a A6 a 0 (3-second gust h) (3-second gust mph) ` '. SG Applicable to methods 0 •' / p (� • /' • • i specified in 12015 IBC, Applicable to methods ^„- �nA •. ` Il v ,.� / 2017 FBC] Section specified in Exceptions 1 'C_vS • [h•�p•{ • •�C"1 1609.1.1.or' determinedby through 3cf(20151SC, [20151BC, 2017 FBCI 2017 FBC) Section ' �e Figures 1609.3(1), (2) or 1609.1.1. (3). Coefficients used in Teble 6 calculaBons for VW, Wind exposure tego Wind exposure category Siding W Product ' Product Thickness (inches) Width dth (inches) Fastener Type Fastener Spadng Frame Type Fastener Spacing (inches Building Heightl•Z (feeQ B C D B C D Aikwable n Design g Load (PSF) Exp B EV C Ezp D Ka Ka GC, 11 G D-15 268 243 221 207 188 171 -103.5 0.7 0.85 1.03 h!ZD 1 0.85 -1.4 0.18 20 268 236 216 207 183 167 -103.5 0.7 0.0 1.08 1 0.85 .1.4 0.18 25 268 231 212 207 179 164 1 -103.5 0.7 0.94 1.12 1 0.85 AA 0.18 No. 8 x 1- 2X4 wood 30 268 226 208 207 176 161 -103.5 0.7 0.98 1.16 1 0.86 AA 0.18 HarclaPlani 5/16 5.26 5/8" long x 0. ribbed ribbed waferhead screwss Blind screwed to WSP or 20 ga. steel framing, 7/16" thick WSP sheathing 12 35 262 223 205 203 173 159 -103.5 0.73 1.01 1.19 t o.85 -1.4 0.18 40 257 220 203 199 170 157 -lo3.5 o.76 1.o4 122 1 '0.85 -1.4 0.18 45 253 217 201 196 168 165 -103.5 0.785 1.085 1.245 1 0 0.18 50 249 215 199 193 166 154 -103.6 0.61 1.09 1.27 1 0.OMAA 5 -1.4 0.18 55 246 213 197 190 165 163 -103.5 0.83 1.11 1 1.29 1 0.85 -1.4 0.18 60 243 211 196 '188 163 152 -103.5 0.85 1.13 1.31 1 0.85 -1.4 0.18 100, 1 201 178 167 156 138 130 -1D3.5 0.99 1.28 1 1.43 h-60 1 1 D.N. -1.8 0.18 0-15 236 214 195 183 166 151 -80.8 0.7 0.85 1 1.03 Ihs6a 1 0.85 -1.4 o.18 20 236 208 190 183 161 147 -80.6 0.7 0.9 1.08 1 0.85 -1.4 0.18 No. 8 x 1- 2X4 wood 25 236 204 187 183 158 145 -80.6 0.7 0.94 1.12 1 0.85 -1.4 0.18 30 236 200 184 183 155 142 -80.6 0.7 0.98 1.16 1 0.85 -1.4 0.18 HardiePlank 5/16 6.25 5/8" long x 0.375" HD ribbed waferhead Blind screwed to WSP or 20 ga. steel framing, 7/16" thick 12 35 231 197 181 179 152 140 -80.6 0.73 1.01 1.19 1 0.85 -1.4 0.18 40 227 194 179 176 150 139 -80.6 0.76 1.04 1.22 1 0.85 -1.4 0.18 45 223 192 177 173 148 137 -80.6 0.785 1.065 1.245 1 Y85 -1.4 0.18 screws WSP sheathing 50 220 189 175 170 147 136 -80.6 0.81 1.09 1.27 1 0.85 -1.4 0.18 55 217 188 174 168 145 135 -8D.6 0.83 1.11 129 t 10.851 AA 10.19 60 214 186 173 166 144 134 -80.8 0.85 1.13 1.31 1 0.85 -1.4 0.18 100 177 157 148 137 122 114 '-80.6 0.99 1.26 1.43 h>60 1 0.85 -1.8 o.t8 0-15 213 193 175 165 150 136 -65.3 0.7 0.85 1.03 h560 1 0.85 -1A 0.18 20 213 188 171 165 146 133 .65.3 0.7 0.9 1.08 1 0.85 -1A 0.18 HardiePlank 5/16 7.25 No. 8 x 1- 518" long x 0.375° HD ribbed waferhead smewss Blind screwed to WSP 2X4 wood or 20 ga. steel framing, 7/16'thick WSP sheathing 12 25 213 184 168 165 142 130 -65.3 0.7 0.94 1.12 1 0.85 AA 0.18 30 213 180 165 165 139 128 -05.3 0.7 0.98 1.16 1 0.85 AA 0.18 35 208 177 163 161 137 126 65.3 0.73 1.01 1.19 1 0.65 -1.4 0.18 40 204 176 161 158 135 125 -65.3 0.76 1.D4 1.22 1 0.85 -1.4 0.18 45 201 172 159 156 134 124 -65.3 0.785 1.065 1.245 1 0.85 -1.4 0.18 50 198 170 168 153 132 122 -65.3 0.81 1.09 1.27 1 0.85 AA 0.18 55 195 169 157 151 131 121 -652 0.83 1.11 1.29 1 o.e5 AA 0.88 60 193 167 155 160 130 120 -65.3 0.85 1.13 1.31 1 0.85 -1.4 0.18 100 160 142 133 124 110 103 -65.3 0.99 126 1.43 h>60 1 0.85 -1.8 0.18 0-15 20B 188 171 161 146 133 -62.3 0.7 0.85 1.03 h580 1 0.85 -1.4 0.18 20 208 183 167 161 142 130 -623 0.7 0.9 1.08 1 0.85 -1.4 0.18 HardiePlank 5/16 7.5 No. 8 x 1- 5/8" long x 0.375" HD ribbed waferhead screws a Blind screwed to WSP 2X4 wood or 20 ga. steel framing, 7/16" thick WSP sheathing 12 25 208 179 164 161 139 127 -62.3 0.7 0.94 1.12 1 0.85 -1.4 0.18 30 208 176 161 161 136 . 125 -62.3 0.7 0.98 1.16 1 0.85 AA 0.18 35 203 173 159 158 134 123 -62.3 0.73 1.01 1.19 1 0.85 -1A 0.18 40 199 170 157 154 132 122 -62.3 0.76 1.04 122 1 0.85 -1A 0.18 45 198 168 155 152 130 121 -62.3 0.785 1.065 1.245 1 0.85 -1.4 0.18 50 193 1 166 154 150 129 119 -62.3 0.81 1.09 1.27 1 0.95 -1.4 0.18 55 191 165 153 148 128 119 -62.3 0.83 1.11 129 1 0.85 -1.4 0.18 60 188 163 152 146 127 118 -62.3 0.85 1.13 1.31 1 OR-1.4 0.18 100 156 138 130 121 1 107 101 -62.3 0.99 126 1.43 h>60 1 0.85 -1.6 o.16 0-15 198 180 164 154 1 139 127 -%.9 0.7 0.86 1.03 hs60 1 0.85 AA 0.18 HardiePlank 5/16 8 No. 8 x 1- 5/8" long x 0.375" HD fibbed waferhead CreWS6 Blind screwed to WSP 2X4 wood or 20 ga. steel framing, 7116° thick WSP sheathing 12 20 198 175 160 164 1 136 124 -56.9 0.7 0.9 1.08 1 0.85 AA 0.18 25 198 171 157 164 1 133 122 -56.9 0.7 0.94 1.12 1 0.85 -1.4 0.18 30 198 168 154 164 130 119 -56.9 0.7 0.98 1.16 1 0.85 -1.4 0.18 35 194 165 152 151 128 118 -56.9 0.73 1.01 1.19 1 0.85 -1.4 0.18 40 190 163 150 148 126 116 -56.9 0.76 1.04 1.22 1 0.85 -1.4 0.18 45 187 161 149 145 125 115 -55.9 0.785 1.065 1.245 1 0.85 -1.4 0.18 50 184 159 147 143 123 114 -58.9 0.81 1.09 1.27 1 0.85 -1.4 0.18 55 182 158 146 141 122 113 -56.9 0.53 1.11 1.20 1 0.85 -1.4 0.18 60 180 156 145 1 139 121 112 -58.9 Q65 1.13 1.31 1 0.85 AA 0.18 100 149 132 124 115 102 96 -56.9 0.99 126 1.43 h>60 I 1 10.85 7-1.8 0.18 I 1 7 RONALD I. OGAWA ASSOCIATES, INC. 16835 ALGONQUIN STREET #443 HUNTINGTON BEACH, CA 92649 714-292-2602 714-847-4595 FAX PROJECT: RIO-2688-17 JAMES HARDIE BUILDING PRODUCTS, INC. 1-888-542-7343 info@jameshardie.com ppplbg''j`1.OGAh/ 2015 /BC, 2017 FBC 2015IBC, 2017 FBC $ fj �1i i 0' Allowable, Ultimate Design Wind, Speed, 1.5 3-second gust mph) Allowable, Nominal Design Wind, Speed, 45 (3-se n gust mph) 1��`}J�! E ; \ ` •� STATE OF %• cap y v OAF •• FC 0 R p P ,.' `ti 9p�a •....... • •' ss�oNAL�eE� � Applicable to methods specified In 120151BC, 2017 FBC) Section 1609.1.1, as determined by Applicable to methods specified In Exceptions 1 through 3 of 12015 IBC, 120151BC, 2017 FBC) Figures 16), (2) or (3). 2017 FBC) Section 1609.1.1. , Coefficients used In Tablions for VWt Wind exposuro tego Wind exposure categoryl Siding K, Product Product Thickness Width (inches) Fastener Type Fastener Spacing Frame Type Fastener Spacing pnche) Building s H(feet B C D B C D Allowable Design Load (PSF) Fop B Exp C Exp D Ka K, G GCpl 0-15 194 176 160 160 136 124 -54.4 0.7 0.85 1.03 hs6o 1 0.85 -1.4 0.18 20 194 171 156 150 133 121 54.4 0.7 0.9 1.08 1 0.85 -1.4 0.18 25 194 168 153 150 130 119 -54A . 0.7 0.94 1.12 1 0.85 -1A 0.18 HardiePlank 5/16 8.25 No. 8 x 1- 5/8" long x 0.375" HD ribbed Waferhead Blind screwed to WSP 2X4 wood or 20 ga. steel framing, 7/16" thick WSP 12 30 194 164 161 150 127 117 -54A 03 0.98 1.16 1 0.85 -IA 0.1a 35 190 162 149 147 125 115 -54A 0.73 1.01 1.19 1 0.85 -1.4 0.18 40 186 159 147 144 123 114 -54.4 0.76 1.04 1.22 1 0.85 -1.4 El 45 183 157 146 142 122 113 -54.4 0.785 1.065 1.245 1 0.85 -1.4 0.18 50 180 156 144 140 121 112 -54.4 0.81 1.09 1.27 1 0:85 -1.4 0.18 scewse sheathing 55 178 154 143 138 119 111 -54.4 0.83 1.11 1.29 1 0.85 -1.4 0.18 60 176 153 142 136 118 110 -54A 0.85 1.13 1.31 1 1 0.85 -1.4 0.18 100 146 129 121 113 100 94 -64A 0.99 126 1.43 h>60 1 0.85 -1.8 0.18 0-15 179 152 148 139 126 114 -46.3 0.7 0.85 1.03 hs60 1 0.85 -1.4 0.18 20 179 158 144 139 122 112 46.3 0.7 0.9 1.08 1 0.65 -1A 0.18 25 179 154 142 139 120 110 -46.3 0.7 0.94 1.12 1 0.65 -1A 0.18 HardlePlank 5/16 9.25 No. 8 x 1- 518" long x . 0375" HD ribbed waferhead screwse Blind screwed to WSP 2X4 wood or 20 ga. steel framing, 7/16" thick WSP sheathing 12 30 179 151 139 139 117 108 46.3 0.7 0.98 1.16 1 0,85 -1.4 0.18 35 175 149 137 136 115 106 -46.3 0.73 1.01 1.19 1 0.85 -1.4 0.18 40 172 147 136 133 114 105 �46.3 0.76 1.04 122 1 0.85 -1.4 0.18 45 169 145 134 131 112 104 -46.3 0.786 1.065 1.245 1 0.85 -1.4 0.18 50 166 143 133 129 111 103 -40.3 0.81 1.09 127 1 0.85 -1.4 0.18 55 164 142 132 127 110 102 46.3 0.83 1.11 125 1 0.65 -1.4 0.18 60 162 141 131 126 109 101 48.3 0.85 1.13 1.31 1 0.85 -1,4 0.16 100 134 119 112 104 92 87 46.3 0.99 1 126 1.43 h>60 1 10.85 -1.8 0.18 0-15 176 159 145 136 123 112 -44.5 0.7 0.85 1.03 NM 1 0.85 -1.4 0.18 20 176 155 141 136 120 109 -44.5 0.7 0.9 1.08 1 0.85 -1A 0.18 25 176 152 139 136 117 108 -44.5 0.7 0.94 1.12 1 0.85 AA 0.18 HardiePlank 5116 9.5 No. 8 x 1- 5/8' long x 0.375" HD ribbed waferhead Screwsa Blind screwed to WSP 2X4 wood or 20 ga. steel framing, 7/16'thick WSP sheathing 12 30 176 1 146 136 136 116 106 -44.5 0.7 0.98 1.18 1 0.85 -1.4 0.18 35 172 1 146 135 133 113 104 -44.5 0.73 1.01 1.19 1 0.85 -1:4 0.18 40 169 144 133 131 112 103 -44.5 0.76 1.04 1.22 1 0.85 -1:4 0.18 45 166 142 132 128 110 102 -44.5 0.785 1.065 1.245 1 0.85 -1.4 0.18 50 163 141 130 126 109 101 -44.6 0.81 1.09 1.27 1 0.65 -1:4 0.18 55 161 139 129 125 108 100 -44.6 0.83 1.11 1.29 1 0.85 -1.4 0.18 60 159 138 128 123 107 99 -44.5 0.85 1.13 1.31 1 0.85 -1.4 0.18 100 132 117 - 102 91 - -44.5 0.99 1.26 1 1.43 h>60 1 10.651 -1.8 0.18 0-15 148 134 122 115 104 94 -31.6 0.7 0.85 1.03 hs60 1 0.85 -1A 0.18 20 148 131 119 115 101 92 -31.6 0.7 0.9 1.08 1 0.85 -1:4 0.18 HardiePlank 5/16 12 No. 8 x 1- 5/8" long x 0.375" HD wafribbed Sckews6 e Blind "'ad "'ad WSP 2X4 wood or 20 ga. steel framing, 7/16" thick WSP sheathing 12 25 14B 128 117 115 99 91 -31.6 0.7 0.94 1.12 1 0.85 -C4 0.18 30 148 125 '115 115 97 89 -31.6 0.7 0.98 1.16 1 0.85 -1.4 0.18 35 145 123 113 112 95 88 -31.6 0.73 1.01 1.19 1 0.85 -tAl 0.18 40 142 121 112 110 94 87 -31.6 0.76 1.04 1.22 1 0.85 -IA 0.18 45 140 120 111 108 93 86 -31.6 0.765 LOBS 1.245 1 0.85 -1.4 0.18 50 138 119 107 92 -31.6 0.81 1.09 127 1 0.85 -1.4 0.18 55 136 118 105 91 -31.6 0.83 1.11 1.29 1 0.85 -IA 0.18 60 134 116 104 90 -31.6 0.85 1.13 1.31 1 0.85 -IA 0.18 100 111 86 -31.6 0.99 126 IA3 h>80 1 0.85 -1.8 0.18 0-15 248 225 204 192 174 168 -88.7 0.7 O.a5 1.03 h560 1 0.85 -1.4 0.18 20 248 219 199 192 169 155 -88.7 0.7 0.9 1.08 1 0.85 -1A 0.18 25 248 214 196 192 166 152 -88.7 0.7 0.94 1.12 1 0.85 -1.4 D.18 HardiePlank 5/16 5.25 0.090" shank 0.215" HD X 1.5" long ring shank nail s Blind nailed to WSP 2X4 wood or 20 ga. steel framing, 7/16" thick WSP sheathing 8 30 248 209 192 192 162 149 -08.7 0.7 0.98 1.16 1 0.85 -1.4 0.18 35 243 206 190 188 160 147 -88.7 0.73 1.01 1.19 1 0.85 -1A 0.18 40 238 203 188 184 157 145 -88.7 0.76 1.04 1.22 1 0.85 AA 0.18 45 234 201 186 181 156 144 -88.7 0.785 1.065 1.245 1 0.85 -1.4 0.18 50 230 199 104 178 154 143 Be.7 0.81 1.09 127 1 0.85 -1.4 0.18 55 228 197 183 176 152 141 88.7 0.83 1.11 128 1 6.85 -1.4 0118 60 225 195 181 174 151 140 -88.7 0.85 1.13 1.31 1 0.85 -iA 0.18 100 186 1 165 155 1 144 1 128 1 120 1 -88.7 0.99 1 126 1 IA3 h>60 1 0,85 -1.8 0.1a