Loading...
HomeMy WebLinkAboutSTRUCTURAL BUILDING SYSTEMSRECEIVED DEC 18 2018 8_1CAI k1lD 52 L u-1, bis ��)Liss'�tj STRUCTALL BUILDING SYSTEMS y�° DESIGN NOTES: MAXIMUM ALLOWABLE �: ND EO04g EPS FOAM CORE ROOF PANELS - METAL SKIN POSTIWE AND NEGATIVE DESIGN PRESSURES DESIGN PRESSURES:_ _ CALCULATED FOR USE WITH THIS SYSTEM UI ID HAVE BEEN CALCULATED IN ACCORDANCE S. - WITH ASCE 7-10 AND THE FLORIDA BUILDING AS NOTED IN CLEAR O ••. A O CODE USING ALLOWABLE STRESS DESIGN SPAN TABLES O MtJETHODOLOGY WITH THE CRITERIA OUTLINED HEREIN. / uyl I TOP & BOTTOM FACING: //7 fit,, H "• • 0.024' ALUM / 0.024'ALUM ENCLOSED STRUCTURE LOADS : L Uj = 0.030' ALUM/ 0.030° ALUM 1. CALCULATIONS BASED ON ASCE 7.10, Vult- 130 MPH - 180 MPH, rn ' � aVa a ENCLOSED STRUCTURE COMPONENTS & CLADDING, RISK CATEGORY -II, Kd-0.85, KZt-1.0, KZ -TABLE UyQ Q W • 26ge STEEL / 26g0 STEEL 30.3-1, GCPI-+/-0.18, 15' MEAN ROOF HEIGHT. Z • W \ �� • MgkIMUM AT FRONT,MAX 25% OF W SCREENED ENCLOSURE LOADS : ti J j C 2. WIND LOADS ARE TAKEN AS THE MAXIMUM BETWEEN ASCE 7-10 ENCLOSED STRUCTURE COMPONENTS J /SEASCH QU S AN, ALONG PANEL� I & CLADDING (AS DESCRIBED ABOVE) AND THE GOVERNING LOADS AS ILLUSTRATED IN FBC TABLE 2002A y be @LSD FOR VERTICAL LOADS ON SOLID ROOFS, UP TO 15' MEAN ROOF HEIGHT, Vult- 130 MPH -180 MPH. c W 2 OVERHANG- OPEN STRUCTURE LOADS: ••L CALCULATIONS BASED ASCE 7-10, ROOF OVER OPEN STRUCTURE COMPONENTS & CLADDING, OBSTRUCTED WIND FLAW, RISK CATEGORY -II, Kd-0.85, Kzt-1.0, Kz 0.85, 15' MEAN ROOF HEIGHT, V% Vult- 130 MPH - 180 MPH. -_...:1 -LOAD COMBINATIONS UTILIZED IN THIS MASTER PLAN SHEET HAVE BEEN DERIVED FROM THE ALLOWABLE STRESS DESIGN LOAD COMBINATIONS ILLUSTRATED IN ASCE 7-10 4 14 ALL WIND SPEEDS LISTED HERE ARE VUR WIND SPEEDS. VeSd WIND SPEEDS NAY BE CALCULATED WITH L'VZOTf{ p THE FOLLOWING CONVERSION: Vult-Veld x J0.6 •y (s1ppE PER CALCULATIONS CONSIDER 9.46' 1DING ��)PANEL !T� �11{ GLITTER opnoNAL GENERAL NOTES: OT ;;`PSF AS DEFINED IN FBC c •ON 1607E SLOPE. ROOF LIVE LOADS USED IN CALCULATIONS oonslDER N N I CONNECTION AT �I V HOST STRUCTURE I DRIP CAP 1. THIS SPECIFICATION HAS BEEN DESIGNED AND SHALL BE FABRICATED IN ACCORDAHCE WITH THE oo r. 0! PER SEPARATE p�EL REQUIREMENTS OF THE FLORIDA BUILDING CODE SIXTH EDITION ((2027) FOR USE WITHIN AND OUTSIDE 1••1 Y I THE HVHZ. COMPOSITE ROOF PANELS SHALL COMPLY WITH CHAPTER 7 SECTION 720, CHAPTER 8 SECTION 0 d g ENGINEERING DEPTH i 603, CLASS A INTERIOR FINISH, AND CHAPTER 26 SECTION 2603 OFTHE FBC. 2. CONTRACTOR SHALL INVESTIGATE AND CONPoRN 70 ALL LOCAL BUILDING CODE AMENDMENTS LJy NI CONNECTION AND I WHICH MAY APPLY. DESIGN CRITERIA BEYOND AS STATED HEREIN MAY REQUIRE ADDITIONAL v Ba 4 I SITE -SPECIFIC SEALED ENGINEERING. p HOST STRUCTURE ! 3. NO 33-1/3%INCREASE IN ALLOWABLE STRESS HAS BEEN USED IN THE DESIGN OF THIS SYSTEM. m •• H 1. PER SEPARATE I I 4. DESIGN PRESSURES AS NOTED HEREIN ARE BASED ON A MAXIMUM TESTED PRESSURE DIVIDED BY A C _ U i ENGINEERING I 2.0 FACTOR OF SAFETY. J i S. THE ARCHITELT/ENGINEER DF RECORD FOR THE PROUECT SUPERSTRUCTURE WITH WHICH THIS DESIGN IS USED SHALL BE RESPONIBLE FOR THE INTEGRITY OF ALL SUPPORTING SURFACES TO THIS s(1 666 DESIGN WHICH SHALL BE COORDINATED BY THE PERMITTING CONTRACTOR. iG 6. SEPARATE'SITE-SPECIFIC' SEALED ENGINEERING SHALL BE REQUIRED IN ORDER TO DEVIATE FROM LOADS DEFLECTIONS, OR SPANS CONTAINED HEREIN. LINEAR 1NTSAPOlAT10N OF THE ALLOWABLE SPAN ,/� JUPPORTING STRUCTURE PER --,--" ER I TABLE LISTED HERIIN SHALL WON PERMITTED. CONTACT THIS ENGINEER FOR ALTERNATE SPAN SEPARATE ENGINEERING l CALCULATIONS AS MAY BE REOUIRED. 7. THE SYSTEM DETAILED HEREIN IS GENERIC AND DOES NOT PROVIDE INFORMATION FOR A SPECIFIC 1 CLEAR SPAN ISOMETRIC > ENGIcoNNEER lONWITMEREDIS ARCHISITE. FOR SITE CONDITIONS TECT SMALL PREPARET FROM THE SITECONDITIONS DOCUMENTS FOR USE IN N.T.S. ISOMETRIC 8. EPS PANEL PERFORMANCE CHARACTERISTICS FOR SELF IGNITION, FIANE SPREAD AND SMOKE _ _ ], DENSITY HAVE BEEN QUALIFIED THROUGH APPLICABLE ASTM TEST STANDARDS. SEE EVALUATION REPORT gg FOR MORE INFORMATIN. _ S Ss A_ SEAL ALLJOINTS WITH CONTINUOUS 0.024' ALUMINUM, CAULKING 0.030' ALUMINUM 1LS DENSITY EPS R 26GA STEEL OR ASTM A653, CS, TYPE B FIOT DI'P GALVAN2ED G90 COATED 57'EEL FACINGS. EXPANDED FOLYSTYRENE FOAM SHALL HAVE TYPICAL DENSITY OF 1.0 PCE THE EPS FOAM SHALL BE ADHERED TO THE ALUMINUM FACING WITH MORAD M640 SERIES ADHESIVE (BY 0.0HH AND HAAS COMPANY). FABRICATION SHALL BE IN ACCORDANCE WITH APPROVED FABRICATION METHODS BY MANUFACTURER FOR ALL PANELS. 11, THE CONTRACTOR IS RESPONSIBLE TO INSULATE ALL MEMBERS FROM DISSIMILAR MATERIALS TO D CORE FOAM SIONS ` " 30•. :; PREVENT ELECTROLYSIS. 12. ENGINEER SEAL AFFIXED HERE TO VALIDATES STRUCTURAL DESIGN AS SHOWN ONLY. USE OF THIS SPECIFICATION BY CONTIUCTOIL, et. el. INDEMNIFIES & SAVES HARMLESS THIS ENGINEER FOR ALL COST& DAMAGES INCLUDING LEGAL FEES & APPEWTE FEES RESULTING FROM MATERIAL FABRICATION,SYSTEM ERECTION, & CONSTRUCTION PRACTICES BEYOND THAT WHICH IS CALLED FOR BY LOCAL, STATE,�& FEDERAL CODES& FROM DEVIATIONS OF THIS PLAN. 13. EXCEPT AS EXPRESSLY PROVIDED HEREIN, NO ADDITIONAL CERTIFICATIONS OR AFFIRMATIONS ARE 144. ALTERATIONS, ADDITIONS, OR OTHER MARKINGS TO THIS DOCUMENT ARE NOT PERMITTED AND INVALDATE TFIS CERTIFICATION. qn HLPIM0H08� 15-2L T ICOSANR TYPICALINTERLOCK . TABLE VALUE DERIVATIONS: &rALEt rAce DI'Ja1 PANEL INTERLOCK 2 DETAIL PANEL PROPERTIES: 1. PANEL STRUCTURAL PROPERTIES DERIVED FROM CERTIFIED TEST REPORTS Nos. Ti-5060278, 506027C, ESP012351P-3A, ESP01231P-4, E014D BY SP0123 1P-5, FSIN HP012351P?6, EXP0 235 1P-6A, ESE �iP 57, 3, 1 N.T.S. DETAIL ESP0123SIP-8, ESP012351P-9• ESP012351P-9A BY ELEMENT MATERIALS TECHNOLOGY. 2. PANEL DEAD LOADS HAVE BEEN FACTORED INTO CALCULATIONS FOR LIVE LOADS OR UPLIFT AS WELL AS CALCULATIONS FOR PANEL PROPERTIES. MAXIMUM ALLOWABLE CLEAR SPAN TABLE ROOF OVER OPEN STRUCTURE: Wind Speed0024' (MPH) (MPH) ExptLstae Ll tlmsta Live Load 8br UpOR AH=abla Live Load 6/a llpOR Dq&,d n Limn (L/) 3' Panels 4' Panels 6` Panels qq� Skln 1-LB EPS 0.030' Alum Skk1 I I -LB EPS 0.024' Alum Skin I -LB EPS 0.03a A um Skin 1-LB EPS 26ga SW Skin 1-LB EPS 0.024' Alum Skin 1-LB EPS 0.030' Alum Skin 1-LB EPS 28ga Steel Skin 1-LB EPS 130 B +!- 7Psf +1-28pst 120 10'-5• 11'-91 1r-1" 12'-11" 1T1' 1T-r 14'-9' 14'•11' 130 B +I' 4W + 2 psf 160 9'-7 III-9^ 10'-10' 1" 12-1" 13-T 14'-T iS-11• 130 B +1- 7 + 28 PSI 240 54" 111 r W-ir 11'-21 111-11" 17-3• lar4r 14'-9' 13D C +- -1-29psf 120 1D'-4• 11'4r lr4r 17-10, IT-1" IT-2" 14'-9' I'm I, 13D C + - 9 P +- 28 180 9'.2• t i'-8" 10-10' 12'-1" 1T.2' 144" 14.11' 13D C + 9 +- Psf 240 e'-4• 111 1" W-10• 111-1" 1 111-11• iz-r I 13-s• 1a•-S' 130 D +1- 59 Psi +/- 35 -+7 120 W-5• 10'-T 10'-11• 11'-r 10-11" 11'-11. 13'-0` la4r 13D D +'68 iir 35 psi —3s­pTs ISO W-T 10'-r IW-2' 11'-S• 10'-11" 1T-11" 13'-4` 13'-8- 130 D +'59 +r 240 7"•10" 19-5" WIT 10-5• 10'-11` 11'-5" 17-11" 13'-8' 140 8 1-49 Psf +/. 29 Psf 120 10•-4' 111-T IZT tr-11" 17-1" 1T-2' 14' W 14'-11' 140 B +'49psf +-28 PSI 180 9'-2" 11'-9• 17-10' 17-3- 12-1" 1T-7' 14W 14'-11' 140 B +•49 Ds * 29 psf240 V-4" 1V-2' 9'-10` 11W 11'-11" 17-r 13'-r 14'•8' 140 c +- 59 psf + 35 Psi 220 F$ 10'-7' 10'-11' 11'-a" 10'41' 1 V-12• 13'-4" 13.6' 140 c +'S9Psf +-35 PR ISO B'-T 10'-T 10'-2- 11'-6' 10'41' IV-12" 174• 1T-S' 140 c +1-59 psf + PSI -+T 240 T•10" tas' 9-3" 10-5" 10'-11• 11'-8' 17-11" 17-6' 140 D -I.71 42 pst 120 W-W 91-B" 8'-11" 10-7• V-11" 10-10- 17-1' 12.7 140 D +l-71 +/- 2 1So 8'-1• B'-8' 9'-6' 10•T 0.11" 10-10• 12'•1• 17.9' 140 D +/-71 PSI + 42Psf 240 r4" 91-W 8-r 9'-9" 7-11• 19-9• it-1" 1r-F 155 B +/-34PsI N-34 psf 120 9'•r 10'-1o• 11-r 11-11^ MILT" tr-2' IT-r 13'-9• I55 B +-57 Psf +1-34 Psf 18D we. Ia-Ia' 10-3' 1t'-r t1`-1• t2'-r 17-T IT-9- I55 a + 57 psf +-34 Ps 240 r.11. IO'4^ 914• 101-r II'-r It`•r IT-0` 13'A` 155 C 41-69P9 ww 41 120 81-8• W-9` 10'-1" I0-9" IVA" 11'-01 I2'4" Irs. Iss c +- Be PS 'psT +1- 41 psf 180 8'-r 9-91 W4r 19-V 10-1" Ill-0• Ir4• 17-V 165 C +1• * -4 240 T-51 8-9' W-r 9-10" 1a-1" to -to' Ir-r IZ'-5' I5S D * Ps + 49 120 9'-1" 9-9` 7-2" I0`4r III-r 1113• 165 D +1. 52paf +-4 Ps 880 JIM W4' 9'-9' 9'-2" 10-0" I7'-2' 11-3' 155 D + 82 PSI +/-49psf 240 Yr W-T W-2" 1a-0" 11'-r I1L9" ley B +1-64 psf +•38 Psf 120 8'-1r IV-21 Ia-6" II-r 1a•s 11'S' I7-0' 1z-11" 165 B +1- 84 psf +- 38 psf 180 84" I a-r a-Io" 11'-r IFS- 111S 1 r 9- I n11- 165 B + e4P +' 38 P•uI 240 T-r I9-1' 8'-11' 10-1" 1a-5" 11'-1^ I2'-6• I7-11" 18.5 C + 77 psf +-48 120 V-r 8'-r W-S 1a-1• W$" 1a-r 11'-r 11'-8" 165 C -1. 71 psf H-46psf ISO T-10" 91T 9-31 10'-1• BW 1a4' 1V-7' 1I'-8' 165 C +1-77 +-46 440 7"-1" 91 2" 8'-S a4" a-8• 10'4' 1/'-T 11'-r 165 D + P 4-66psf 220 W-T a-r 8'•T 9'-5" Ilr4r 10'-r 165 D +1-94 pet +-59 Fir I80 8'-r F-r a-r a3' Ia-8' t0-r 165 D +6 Psf -58 440 T-1P 8,40" V-7' 91-51 i(r4r 1D'•T 17o B +/•e7 Psf ,.40 psi 120 6'-B" 9'-10• IVA" 10'-10, Ia•1" II -I" 174• 1r-8^ 17o B +-6 psf +-40 PSI ISO V-r 91-10• F-r Ia-IO" 10'•1" 111-1" I74• ir-8" 170 B +1. 67 psf + psf 240 TS 9'-1M F-9' 9-11• 10-1' 1a-11" 17-3" Ir-w 170 C + - 82 +' 9 psf 80 Wr W-10' 9'-Y 1a-D• 11'-3• 11'4' 170 C +-8 +-4 120 F•r F-10" Wr 1T-0^ 11'-3• 11'4" 170 C +- UZ Pat +' 49 Pswl 1S0 W-1' 9'-10' F-r ta-0• 11'•3• 17'4- 170 t C -TY2W - 240 W-T 913' F-r W-0' 1 T•3• 114' 170 D +1-10711sf +•80 —+FTOW 80 B'4• 8-11" 6`41 9'•t" ta2` 19-T not D +'101 120 8'4• F-tr F4• 9-1" 1a-2• la-7 170 D + 101 +•BO 160 8'4' B'-11' 84' W-1" 1a-r IW-3- 170t D +• DI +-60 240 Tor 8-8" W4• V-1" to-r 1F-3' 175 C +/- 97 psf +/- SZ PSI 80 8'-I1" W-W V-11" 9-9" 10-11" 11'-0` 175t C + 87 +.62 180 8'-10^ W$" B'-11" 9'-W 10-11' 11'-0` 175 D +-108 +-63 80 8'-I" b'-8" W-1' 8'-10" W-11" 9'-1r 175 t D +h I08 psf +' 180 8'-0" W-8" 8'•1" 8'-10" W-11" W-1r 150t C +l•92 +- Psf 120 W-W".ir 9'-6• 1o'-T 1o'-9' ISO C +1-92 pst +l-55 Pwsr 180 8'-B' FJ' W-B' 9'-8" 1a-T 1a-9' 180 t c +/- B2 psf +!- 55 psf 240 T-1 T 1 8,-11' 1 B'-8' 9-w 10•T lFg. 41 . No PEOa Tt tit STATE iO'C •••• F10R1 TABLE NOTES: 1. THIS TABLE LISTS 130TH ULTIMATE AND ALLOWABLE PRESSURE VALUES (ULTIMATE PRESSURE - 1.67 • ALLOWABLE PRESSURE). ULTIMATE PRESSURES SHALL BE USED ONLY WHEN ULTIMATE PRESSURES ARE GIVEN FOR A SITE SPECIFIC INSTALLATION. CLEAR SPAN TABLE USE INSTRUCTIONS: 1. DETERMINE TYPE OF ENCLOSURE TO BE COVERED (ENCLOSED, SCREENED WALLS, OR OPEN STRUCTURE). 2. DETERMINE THE SITE SPECIFIC REQUIRED ULTIMATE DESIGN WIND SPEED (MPH), IN ACCORDANCE WITH THE FLORIDA BUILDING CODE. 3. FIND ALLOWABLE COMPOSITE PANEL CLEAR SPAN IN TABLES FOR APPROPRIATE PANEL DEPTH, FACING THICKNESS, AND EPS CORE DENSITY SELECTED. 4. ® INDICATES VALUES NOT VALID FOR USE. DEFLECTION NOTES: 1. DETERMINE REQUIRED DEFLECTION LIMITATION PER THE MINIMUM REQUIREMENTS ILLUSTRATED IN THE FLORIDA BUILDING CODE. 2. (1) INDICATES ROWS FOR USE WITHIN THE HVHZ ONLY. DEFLECTION LIMITS CONSIDERED FOR USE IN THE HVHZ ARE: 2.1. L/80 FOR SPANS 512'-W 2.2. V180 FOR SPANS > 12'-0' OTHER CONSIDERATIONS: 1. FRONT OVERHANG MAY BE UP TO 3'-O' WITH VALUES LISTED HEREIN. MAXINUM UNSUPPORTED SIDE OVERHANG IS 25% OF LAST PANEL WITHH (l.e. lr MAX FOR 48" PANEL WIDTH). M' $ a (9oF„ a�5 IZ"I 817. 1 �a 8. --� o 9 15-2409a Vr% XA - d l STRUCTALL BUILDING SYSTEMS EPS FOAM CORE ROOF PANELS - METAL SKIN • 0.024• ALUM / 0.024• ALUM 0.030' ALUM/ 0.030' ALUM • 269a STEEL / 26ga STEEL - M ••36' MAX OVERHANG �IMUM CHAR AT FRONT, 25% OF AN 1 'IEDL/Lz/ PANEL WIDTH `` ALONG SIDES, TYP. (SLppF?� �� G OkG PANEL � .OPTIONAL CONNECTION AT DE) HOST STRUCTURE PER SEPARATE PANEL ENGINEERING nF11Tw j CONNECTION AND HOST STRUCTURE PER SEPARATE ENGINEERING ---� - SUPPORTING STRUCTURE PER J SEPARATE ENGINEERING 111 1 CLEAR SPAN ISOMETRIC 1 N.T.S. - ISOMETRIC SEAL ALLJOINTS WITH CONTINUOUS 0.024' ALUMINUM, CAULKING 0.030' ALUMINUM 1LB DENSITY EP R 26GA STEEL 'CORE FOAM A SKJNS t. CROSS SECTION AT TYPICAL PANEL INTMOfX PANEL INTERLOCK z DETAIL 1 N.T.S. DETAIL RECEIVED SCANNED BY Dli i 8.11$ St Lucie County DESIGN NOTES: MAXIMUM ALLOWABLE= No POSITIVE AND NEGATIVE DESIGN PRESSURES DESIGN PRESSURES:_ CALCULATED FOR USE WITH THIS SYSTEM HAVE BEEN CALCULATED IN AOMRDANCE WITH ASCE 7-10 AND THE FLORIDA BUILDING AS NOTED IN CLEAR O ••. CODE USING ALLOWABLE STRESS DESIGN METHODOLOGY WITH THE CRITERIA SPAN TABLES OUTLINED HEREIN. /TT ENCLOSED STRUCTURE LOADS: I. CALCULATIONS BASED ON ASCE 7.10, Vult= 130 MPH - 180 MPH, ENCLOSED STRUCTURE COMPONENTS & CLADDING, RISK CATEGORY=U, Kd-0.85, Kzt-1.0, KZ -TABLE 30.3-1, GCpi-+/-0.18, 1S' MEAN ROOF HEIGHT. SCREENED ENCLOSURE LOADS: 2. WIND LOADS ARE TAKEN AS THE MAXIMUM BETWEEN ASCE 7-10 ENCLOSED STRUCTURE COMPONENTS & CLADDING (AS DESCRIBED ABOVE) AND THE GOVERNING LOADS AS ILLUSTRATED IN FBC TABLE 2002.4 FOR VERTICAL LOADS ON SOLID ROOFS, UP TO 15' MEAN ROOF HEIGHT, Vult= 230 MPH - LBO MPH. OPEN STRUCTURE LOADS: ' 3. CALCULATIONS BASED ASCE 7-10, ROOF OVER OPEN STRUCTURE COMPONENTS & CLADDING, OBSTRUCTED WIND FLAW, RISK CATEGORY -II, Kd-O.85, KA-1.0, Kr 0.85, 15' MEAN ROOF HEIGHT, Vult- 130 MPH - 180 MPH. -LOAD COMBINATIONS UTILIZED IN THIS MASTER PLAN SHEET HAVE BEEN DERIVED FROM THE ALLOWABLE STRESS DESIGN LOAD COMBINATIONS ILLUSTRATED IN ASCE 7-10 ••ALL WIND SPEEDS LISTED HERE ARE Vult WIND SPEEDS. Vasd WIND SPEEDS MAY BE CALCULATED WITH THE FOLLOWING CONVERSION: VuR=Vasd x %10.6 •CALCULATIONS CONSIDER 9A6• ROOF SLOPE. ROOF LIVE LOADS USED IN CALCULATIONS CONSIDER 0 2PSF AS DEFINED IN FBC SECTION 1607. 11 - GENERAL NOTES: THE DESIGN OF THIS SYSTEM. TESTED PRESSURE DIVIDED BY A GENERIC AND DOB NOT PROVIDE INFORMATION FOR A SPECIFIC SELF IGNITION, FLAME SPREAD AND SMOKE ASTT1 TEST S7ANDAILDS. SEE EVALUATION REPORT .BEIN TO HERE 13. EXCEPT AS EXPRESSLY PROVIDED HEREIN, NO ADDITIONAL CERTIFICATIONS OR AFFIRMATIONS ARE INTENDED. 14. ALTERATIONS ADDITIONS, OR OTHER MARKINGS TOTHIS DOCUMENT ARE NOT PERMITTED AND INVALIDATE THIS C�KHREATION. TABLE VALUE DERIVATIONS: PANEL PROPERTIES: 1. PANEL r"LTURAL PROPERTIES DERIVED FROM CERTIFIED TEST REPORTS Nos. TT-506027B, 505027C, SD6027D, 509014A, S09014D BY TERRAPIN TESTING, ESP012351P-1, ESP012351P-2, ESP012351P-3, ESP012351P-3A, ESP012351P4, ESP012351P-S, ESP012351P-6, EXPO12353P-6A, ESPO12351P-7, ESP012351P-8, ESP0123SIP-9, ESP012351P-9A BY ELEMENT MATERIALS TECHNOLOGY. 2. PANEL DEAD LOADS HAVE BEEN FACTORED INTO CALCULATIONS FOR WE LOADS OR UPUFTAS WELL AS CALCULATIONS FOR PANEL PROPERTIES. s N9FI j Ni r oW t NO I P ! tal;lll A91k Pm N MAXIMUM ALLOWABLE CLEAR SPAN TABLE MAXIMUM ALLOWABLE CLEAR SPAN TABLE ROOF OVER ENCLOSED STRUCTURE: ROOF OVER SCREEN WALL STRUCTURE: %Mnd Spy (,,�N) Ezpssum Lftimale War Uoed alorllPSft AD-mWe Lkn1 LoeO S/orUPGit Defection Umll (U„,) 3• Panels 4' Penh 6' Panels OA24• Alum Skin 1-LB EPS DA30• Alum SW 1-LB EPS OA24• Alum Skin 14B M OA30• Alum Skin 149 EPS 2890 Seel SWn 11B EPS 0.024• Alum Skin 14905 0.030' Alum Skin 149 EPS 28ge Steel Skin I -LB EPS 130 B +•47 +1-28 psi 120 10'S 11•b• 1z-/• ir•11" 1z-1• IB4- 14'A• 14'•11• 130 B +F 47 + 28 160 8'-r 11•-0• 10'-10• 173• 17-T IS-T 14'3' 14_1 130 B +-47 +•28psf 240 8'-0' 11'r 9'-11• IT-2- 11'-110 1Y4' 13-9• I'M 130 C +- +- 120 10•b• 11'9' 17-1• 17-N• 17.1" 13'3' 14'-0• 14•-11' 130 C +1-47 -1-28 psf 180 9'-r 71'9' 10'-10' 17-3" /7-T 13'.3` 14'-0• 14'-1P 130 C +-47 +/--32 240 94' 11•-2' 9'-11" 11'-2* 11'-11• Ir-w 17-91 130 D +-64 psf p3f 120 99% 11'-7• 11.4• 1214• 111b• 1Ys• 13-11" 1a-1" 130 D +&64 psi +h 32 psf 180 8'-10• 111-1• 10•-B" 111-9• 111b• 12'b` 131-ir 1a-1• 130 D *-61 PSI +-32 ar 240 8'-0' 1 101b1 1 91-V 101b1 111b• 11'A1 13'•3• td'-1• 140 B +1-47 +-zo pw 120 101b" 11'-B• Ir-1• 17-11' 17.1• 13'-3' W-91 14'-11' 140 B +1-47 +/-28 160 9'-r 11'-0' 10'•10" Ir-T 17.1" IT-7 IN-9" 14'411 140 B +l- 7 - Psi 240 8•-0• tT-r 9-11• 111-21 111-11" 12.r 13'-B• t4'-9• 140 c +h64psf +/-32 psi 120 9'•10" tl•-11 11'b" 17•2* 111b' irb• 73'-11• 14'-1- 140 c +P 54 D +- 32 psi ISO 8'-10• i1'-1' 10b" 11'-70• 111-6" 17b" 13.11" 14'-11 140 C *1-54 psf +l-32 pst 240 8'-1' 10'-01 9-V 10••9' 1 11'-6- Ill -IV 13'3• 14'-1' 140 D +6 66 psf +P 38 p5f120 8-11' 10'-1' 194• 71'-1• 19-0• 17.4" 17s• 179' 140 D +1-- + 39PSf 180 - 8'4• 10'-11 9'-10" 11'•1' 10'4• 1114• 17$• 17.9' 140 D -i-as psT +T 39 pif 240 Tb' 10'-1' 8•-tr 10'-0• 194• 11•-1" 17b' t79' 155 B +1-52Pat -37 /� 9'-ir 111-7 /1-7" 17b• 11'•7" 17b• 14'-r 144' 165 B +/-92 psf +.37 160 8'-11• ll'3r 19-r IILII' 11'-r 12W 14'-Y 14'4' 156 8 +7 5 +- 31 Pd 240 8'•2• 10'-10' 91r 101•10' 11-71 11'-11• 13'b` 14'4' 155 0 + 82 pa +/-37 pet 120 9'-0• 193• 10'b• 11'3' 101s' ills" 17-10• 1z-ir 155 1 C I +/-62 psf +/-37psf ISO 81b' 10'3• 9-11• 111-7 19.6• 11'b• 17-10• 17-tr 166 C + 62 pat +F 37 240 T-r. 10'-2' 9'-0' 10'-Y low 1t'-- t7-r 121•tY 165 D + 76PSf +/-46pS1 120 8'-r 9.3' 91b' 19-r 914r f0-61 11'-8' 111A1 155 D W76 +F45 pal ISO T-10• 9117 913` 101-Y 91-6 10's• 111.8• 11'-9• 155 D + # 48 D•+ 440 P-r 9-W 8'-6• 9'b' W-W 10'-61 11's• 11'91 166 B +/-59 psi +h 120 94' 19•T /0'•10` 111•T 101•17 11'-11' 13'4• 13's' 165 B •%59 +P 36 psi 180 8'-r 10'-7' 19•r 111b' l0'-10• it'-11" 13W 13b- 166 B +-69 SF +}35 PSf 240 T-9• 101S• B'-21 101b' 10'-1D• 111b• it-10' 13b` 165 C +/-7 +1.42 psf 12D B'-W 9'-T 9'-7D• 10'-r 9'-10' 10'-10' 1r-7' 17•2* 165 c +-T1 p5f +l-4 880 9-0' 9'-T 9-8• 10'-r 91-10• 19-10• 1z-1" 1zr 165 C +-71 +F4 paf 240 74• 9-7" 81-B' 95' 91-10' 101-8" 1r-0' 174- 165 D +- +- 220 8'-11' 9'-7• 8-11' 9'-10• 10'-11' 111.11 165 D + 87 +/.62 180 go B'-11" 9'•T 9111• 9'-10• 19-11' 11'•1• 165 D +/-87 +A 62 pst yip 8'-11 IM. 8-11• 9-10• 10'-11- 11'-1' 170 B +662 pSf +/• 37 psf 120 91•1• 1013" 10s1 I1'3' 10'-r 11' T 12-11' 13.1' 170 B +M62 + 180 B's• 193` 9-lr 111•2, 10'-T lr-7' 12'-0r 13.1' 170 B +-62 pet +1-37 240 T8' 101,Y 914' 10'-2* 10'-T 11'-21 17-7' 13-1- 170 C +/-76psf +/-45psf Sp 8'-T 9'4• 9'-r low 9-T low 1119' Ill -IV 170 C +-76 + 120 8'3' 94' 9-T 10'3' 9-T 19s" 119• 11'-10- 170 c + ah45Ds1 880 T-1l• 8'4• 9'4• 70'3' 9-T 101b' 1119• 111.10- WOt c +/-78 +7-45 240 T-Y 9'4" 8'$ B's• B'-T 101b• 1119• 1 1l'-10• 170 D +-92 + 55D61 80 8'3° 93• 81s' 9s' 1(y•T 10'9" 170 t D + • 92 +/- 120 8's• 93" W-r 9-6' 19.7' 10'9• 770 D * -82 +/.55 psl 180 8's° 93• 8'3• 9b• 79.7• 10'9• 170t D +-92 + 66 pst 240 T-11• 8'-11• 8'3• B'b• 19-r 10'9' C+1-81 +-48 80 93' 8'-10" 9'3• 19-1• 11'4' 11' c +I.81 Psi +!-a8 psi 180 9.7•9'-10' 9'•T 10'-1' 114' 11'$ D + 99 + • t� BD 8'4' B'-17 Bb 9-r 193' l0'4'D L +1-99 psi * - 69 Psi 160 T-V 8'•i2" 8'-6' 9•Y 19.3• 10'4- C +/• +1.6 Psi 12D 9'-0''•'•9'-11` 11'-1- 2*c -ABe +.51 1S0 8'-11' 9'$' 9-0• B•it• 11'-1' 11-r C +/-86 psf -1. 61 psi 240 8•-r 9,-r 9-0' 9-11' 11'-7" I IT_ Wine WH)Speod @CHI E�Oeure _ UMmate Live&I" U4ae B/orUpLR Albwable LNe U0a0 bhrUPSH Defection Limit ..Alum (U,,,) 3• Pan1a 4• Penh 6' Panels 0.024• SkM 0.090' Alum Skin 0.024° Alum SkN 0.030• Alum Skin 260a Steel Skin 0.024- Alum Skin 0.030' Alum Skin --eT_Sk10 1-LB EPS I 1-LB EPS td8 EPS /-LB EPS 1-LB EPS 148 EPS 14.8 EPS 7-LB 130 B +•48 psf +- 7 120 10'-r 17.1• t7s' IT-r 17b• 13'-r 1&4" 16' 130 B +748Psf +/-27P 660 9'0 17-1" 17'-1• 77b• 7zb1 77r 15'-r 164. 130 B +F iFZ7­p3T240 8'4' 11'4• 10'-1• 11-0 17-2- 17-0• to-0- 14'-12- 130 C +• a 27 120 IV-61 11'-11" 12.3' 171• 1r3' lw.6" 14'-12' 16-2" 130 C *- pat +1-27PS1 180 93• it'-11° 10'-1r 77b• 173' IT-61 14'-1Y 16-r 130 c +• + 240 8•b• 11'3• 9'-1r 111-Y 1z-0• i7.6• 13'-1r 14'-19' 130 D + + 120 10.4• 11'9` 11'•1r 1r-10' ir-0• IT,- 14'-8• fa-10" 130 D * • 7 t 180 9-2- 11'b" 10'-10• 72'-Y iz-0• Iv r 14W 14'-10- 130 D +•47psf a 28 240 V-4' 11%1• 9-10' 1111• 11'-70' 17-Y IT-W 74'-B" 140 B +• + T 120 10'-6• it'-11• 12'-T 13'-1• 17-3" 131-V 14'-12' 16-r 140 B I+-48 t 27 180 93' 11'-it• 10'-1Y 72'4• I" 73'$ 14'-12' 16-r 140 B •- Psl + 27 240 B'b' 113' 9•-1r 1r.9" 1z-0• 1r4" 13'-1r fa-10' 140 +•26 120 104• ills• 17'-1r 12'-10' Iz-w 13'-2° 74'-0` 14'-10" 140 + 2 psf 180 9'-r 11'-0• 10'-10" lr-r 1z-0` 13'-r "V-8; 14'-10" 140p51 +•28pat 240 8-4- 11•-1' 9'-10• 11'-7• 11'-10• 17-r 13'4' 14'$' 1401 Psi +-30 120 19-1• it's` 11'9' t7b' 11'-9• 17-10• 14.4` 14W 1401 JD+ +-30 ISO 9-0'11'-5" I(Yr 17-0• 71'-9• 17.10' 14'4• 14'-6•1401 ♦-3opsf 240 9-r 10'-11.9'B' 10-11• 11'-8' 12'-0• IT-W 74'-6' 1657 psi + 28 120 19-0' 11'$• 17-0' 17-10' 12-1' 73'-Y 14'-9• 14'-11• 1557 a•28 180 9-Y 11'-B• 10'•10" 1z-w 17-1• 13'-2'1657Pst a.28Psf 240 B'4' 11'-1" 9-10• it'-l• 11'-11• lz3• 139' 14W 165 + 29 12D IV_" 11•b` 11.9" 17-7" 11'-10• 17./1' W-V 14'•T 155 c +• P -7-0 780 9.1• 111b` 10'-S• IT-1' 11'-10• 1r-11° 14'b• 14'-r 155 c +- 9 0 + 29 PGf 240 8'-31 10'-12' 8'-9° 19-11• 11'-0• 17-11 13'-7' 1as- 165 D +-67 a 34 121) 9b• 104" 1 1941• 111s• 1 10,41• 111-12• 13'4• 13-6- 165 D + 6TPsf +• 180 8'-71 10'-T 19-2- it's' /0'41• 1 11•42- IT-4- 13•s- 166 0 +•67 -1-34psf 240 T-Ir 101b' 9'-r t0'b• 19-11• 11'b` 17-110 iv-w 165 B + + Psi 120 10•-Y 1116' Ill -I • 1ZA1 111-10• 17-12, 14's• 14-5' 165 B + 9P + 180 T-1' ills' 10191 iz-r 1r-10• 72'-12- 14-8' 14'-W 165 B + 4Bp +A29PSI 240 9.31 11'-0• 9-9' 10'-12' 111-01 17-11 73-7- 74. - 166 c +/-64psf + 32psf 120 9-9' 10'-1r n'4• 1z-r 114` 1r{i• 13-10• 13-ir 165 C +F +•32 psi ISO 8'-10' 101ir 19-6' 11'A• 114• 1Yb' 13'-10" 13-12• 166 c * D + • 32 P -0240 8'• 10'-B• 914, 101-W 114" 11 9• 1 13.2- iT-1Y 165 1 D ♦1-66W +1-39P51 120 B'-10• 9'-1r I f0'3• 10'-111 iw-r Ill-r 1Ys' 1z$• 165 D +A p5f +• 39 W 180 8'3• 9'-12* 9'9• 10'41' iv-r 113' 12.6' 1z9" 165 0 + 88 +• 39 PSI 24D Ts• 9'-12• 8'-10• 9-12' Iw-r 10'-121 174- 17$- 170 B * +- 220 10'-2• H'b' 11'9` 17-7' 11'-10• 1z-1r la's• 14'-r 170 B + 49 + 29 180 9-1" 11•S 101b• 17-1" 11'-10• 17-11• 14'-W 14•-7' 17D 8 + 49psf -+TWFsF 240 61-7 10'-12" 91-9' 10'-17• 171-T 12'4• 73•r IN-W 170 C +- 7 -7 80 9s• 10'-0' 10'•12* 11191 19-121 17-0' 17-0' 17-0' 170 c +-67pst +-34 12D W-61 101s' 10•42, 1119' 19-121 17-0• 135• IT-r 170 C a-67 +-34psf 180 W-8' 101s' 10-r 111b• 10'-12" 1z-0° 13!6v /37' 1701 C 7pst +1-34psf 240 1r-10• 101b1 9'3' 19b" 79.12' 11'-w 1 17.11' 13-T 170 D +•88pe! 47 80 6'-T W-W 1 9-11• tps• 8-1T 19'.11" 17-0' 1r-09 170 t D +-88 psf + 41 120 9-7" 99' 9'-11• 10's• 9'-11• 19.11' 17•2" 174' 170 D +- 9 - 1 P 180 8'-1. 91-W 9'-r 19-0" 9'-11' 10'-11" 17-2" 12W 170 t D +7-685si +-41Psf 240 7"4° 9•s' B'b' 9'9• 9.17' 199' 17-11 174- 176 C +•8 psi +-38 80 93• 19.5' 10'4• 171b' 1991 ii'9' 1z-0' 1r-01 175 t c +.8 +.3Bpsf 180 81b• 101b• 10•-0• it'4" 10'9" 1119" 13'-l" 133• 175 D +/-72 +1-43PW -+I--4§W SO 94• 9.6' 9'9• I f0'b• I 17-0- 176 t D + 72 Psf 180 T-71' 9$ 91-51 10's• 99' 70'-0' 11'-11' 17-W 180 t C +• +1-37 120 0'-1Y -Y 10' 101-V 71'-Y 70's' 17-8' 12'-10• 17•11" 180 t C 180 8'-0• 10'•Y 9'-11• 71'-2° 19s• 17'-0' 77-10• 1Y•71• ISO t I C +/•62Psf I +/•37Ds1 1 240 1 T-T 70'•2* B'-tY I 10--1' 1 10'fi 11'-2` NOTE: SEE SEE TABLE NOTES DETAILED ON SHEET 3 W N9��I ~ f3VF W .4 0 MAXIMUM ALLOWABLE CLEAR SPAN TABLE ROOF OVER OPEN STRUCTURE: Wind Speed (MPH) Exposure U6imate Live Coed 8br UpOft Allomvada Lela Load 8lor UpOR DeOeWon Umk a-, 3' Panels 4• Panels 6" Panels 0.024' Adnn Skin 1-LS EPS 0.030• Alum Skin 1-LB EPS 0.024' Akon Skin 1-LB EPS 0.030' Alum Skin 1-LB EPS 2 aSLael Skin 14.0 EPS (LOW0.030` Alum Skin 1-1.9 EPS Alum Skin 1-LB EPS 28ge Steel SYJn 1-LB EPS 13D B +1-47 psf +-28 psf 120 IV-5' 11'-B" 17-1" tz-11" 12•-1" 13•-3•' 14•-9" 14•-11• 130 8 +-47 +-28 180 9'•2' tr-9• 1a-10' lz-r 17-11 IT-r 14•-9" 14'-tr 130 8 + 4 psf TF2-8P7 240 8.4' ill-r 91-11` 111-2" 1r•11" 125' IV-9• 14'-8' 130 C +-49 pT + 28 120 104- 11•-a" 17-0" 17-10' 17-1 1T-2' 14•-r 1NAI' 13D C +• 49psf --Pat 180 1 T-2• 11-4• 1040• 1z-3• 17-1" 1 1T-2' 14•-9` 14•11- 130 c +• 9psf +1- 29 pm 240 V-4- 111-1' W-10• 11'-1" tr-11• tz-• 13••9• 14•-r 130 D • +5 psf +/- 35Psf 120 W51 IV-7" 10-11" 111-r 10-11• 11'-111 13'-4• 13'48' 13D D +-59 ps + 35 180 V-7" 10-r 10-7' 11'-5" 10-11' 11'-11• 13•-4" 13•-8' 130 D +/-59 - 240 T-10" 10-5• WIT 105' 10-11• 11•-5` 1z-11• 17.6' 140 B +1-49 psf +f•29 psf 120 10-4' 111-9• IT4r 1z-11" 1z-1" 13'-21 1W-r 14'-11• 140 B +-49psf +-29 180 91-r 111-9" 101-10, 1z-31 IV-1" 13-r 14•-9' IN-11" 140 B +•49 * Psf 240 V-4- 1V-2' 9•-10• 11•-1• 11•-11• 17-3' 13•-9` IV-8" 140 C +-59 psf + 120 91S` 10-r 10-111 11148" 10-11• 111-12• IV-4" IT-S' 140 C +-SBpsf +1-35psf 180 8•-7' 10-7' 10-21 11•-8• 10-11• 11'Ir 13-4' 17-6- 140 C +•59 + 240 T-10• 105" 0-3" 10.5• IV-11' 11.5` 1z-11" IT-W 140 D -1- 71 pTs +l- 2 psf 12D 8.5" 91-W 9•-11• 10-7' 0-11" 10-10" 12'-1" 12-3- 140 D +1- 1 Psi + 2 880 8•-1• 0.8" 9'-r 10-r 9•-11• m to` 1r 1• 1z-r 140 D +1.71psf +/- 2psf 240 T-0" W-8' H'-r 9'-9• 0.11• 10-9' 17.1' tz-w 155 B +1-34psf +/-34psf 120 W.7' 101-IQ• 11-r 111-11" 111-1" 17-2' 13-r 13••9• 155 B + - 57 pst +1- 34 psf 180 8'S` to'-10- 10'•3• 11'-7' 111-1" 1z-21 IT-r IITr 1s5 B +• +- Psf 240 T-11" 1(1'-8" 9-r 105" 11••1" 11•-r 13•40'• 13'-9" 155 C + 69 + 41 PS 120 8-r 9'-9• 10-11 10-9• 10.1" 11•-0• 1z-4" iz5- 155 C *•8 + 41 psf 180 V-2" W-9" 04H" 10-9" 10-1" 111-w lx4* 12-5• 155 C +1- 69 psf +-41 p7s 240 T5" 94r 8'-9' W-10" 10-1" 10-10' 1z-r 1z-5• 155 D +• +• Bps 220 0-1• 8'-9" 0.2" 10.0• 11•-z' 111-3" 155 D + • 82 psf +- 49 PST 1-80 9'-0• 914• 9•-2• 10-0" 11'-r 111J" 155 D +1-62 psi M-49 psf 240 8'-2 W-r W-2" 10-0' 111-2" 111•3" 165 B +/• 64 psf + - 36 pel 120 W-12" 10-2" 10-S' 111-r 10-S" 11.5" 1z-0• 12'-11" 16s B +1- 64 psf +/- 38 psf 880 V-4" 10-2^ 9-10" m1" 10•S' 1 rS 1z-9^ 17-11" 165 B +-66p +-35psi 240 T-r 10•-1" 6-11• IV-1" 105" Ill I" 17-11^ 165 C + 7 p + • 48 psf 12D W-2• W-2' 95' I VA" 05• 104' 111-r 11.5" 165 1 C I + 77 Pal + • 46 PSI 180 T-10` 9'-2" 03 10-1' 05' 10-4• 11'•r 11'S" ISS C +-77 psf +/-46 240 T-1" 9-2• W-S 9'S• 0.6" IV-4' IT-r 11.5" 165 D + • 94 ps + • 56 psf 120 8'-r Fr B'-r 9•-5" 10-8• 10-T 165 D • - 94 psf + • 56 880 ME H•-r 9•-2" H••r 91-5" Ior4r /0-r 165 D + 94 psf • 66 Ps 240 T•10' V-10" B'-r 9.5' 105• 10'-r 170 0 +1-67psf +1-40psf 120 8W$• 0-10' 10-1' 101-10" 10.1" 1/'-I" IZ4' IX-8- 170 B +-67ps H-40 psf 180 81-2" 91-10" B•-8• 101•10" 10.1' 11•-1• 12'4" 1z5- ITO 0 +/-67 psf +- 40psi 240 TS" 9'-1D" W-9" 9-11" 19.11 IV-11• tz-3" IF-6 170 C + • H ♦ - 49 psi 80 B'-2• 9'-10' 0-2' 10.0• 11'-3` 11-4- 170 C +• 82 psf + 49 I" f7-7' 9'•10^ B•-2• IV-0" ll'-3` 11•4- 170 C +• PS +- 100 9'-1' 9-10' 9'•2• 10-0' 111•3' 1114' 170t C +r- 2 + ps 240 8'-3• 9'J" W-2' 10-0" Il-3• 1114• 170 D +-107 +- 0 80 64' 8'-11, 814• 91-l" 10-2• i0r-T 170t D +-101 psf +-60 pT 120 H•4" 8'-11" 8••4" 9'-1" 10-2' 10.3' 170 D • 1 + 01 + - 80 Of 180 8'4' 8'-I I" 8'-4- 91-14 102' - 103' 170 t D +1-10 Psf + 60 Psf 240 T-r H•4' 8.4" 9'-1" 10-2• 10-3" 775 C +/- 87 psf +/• 52 So 8'-11" 9'S' 8'-11' 9'-9" 10.11" 11'-0' 175 t C + • 87 psl + - 62 psf 180 V-10" W-W W-11" 9'-9' 10-11" 11'-0- 175 D +-108 +-63 80 &-1• 8'S" 8'-1' 8-10" 0-11' 9'-Ir 775t p +-108 psf +•63 180 8'-1' B'-8" 8••1• 8'-10" W-11" W-12• 180 t C - +/• 92 + - 55 120 &4r 7-3" B'-8' 9'-6" 10••r 10.9• 180 t c - • 92 pel +/• 65 psT 180 81-r 9'S" H•5• W-W 10•-7- IV-9' 180 t c ♦/- 92 psf +/- 55 psf 240 T-11" H'-11' w-w 9'-T 10-r 10-9` I No PEOO, * Tt '. O '•.• STATE F LOR1 "/rs/S/ONA TABLE NOTES: 1. THIS TABLE LISTS BOTH ULTIMATE AND ALLOWABLE PRESSURE VALUES (ULTIMATE PRESSURE - 1.67 • ALLOWABLE PRESSURE). ULTIMATE PRESSURES SHALL BE USED ONLY WHEN ULTIMATE PRESSURES ARE GIVEN FOR A SITE SPECIFIC INSTALLATION. CLEAR SPAN TABLE USE INSTRUCTIONS: 1. DETERMINE TYPE OF ENCLOSURE TO BE COVERED (ENCLOSED, SCREENED WALLS, OR OPEN STRUCTURE). 2. DETERMINE THE SITE SPECIFIC REQUIRED ULTIMATE DESIGN WIND SPEED (MPH), IN ACCORDANCE WITH THE FLORIDA BUILDING CODE. 3. FIND ALLOWABLE COMPOSITE PANEL CLEAR SPAN IN TABLES FOR APPROPRIATE PANEL DEPTH, FACING THICKNESS, AND EPS CORE DENSITY SELECTED. 4. ® INDICATES VALUES NOT VALID FOR USE. DEFLECTION NOTES: 1. DETERMINE REQUIRED DEFLECTION LIMITATION PER THE MINIMUM REQUIREMENTS ILLUSTRATED IN THE FLORIDA BUILDING CODE. 2. (1) INDICATES ROWS FOR USE WITHIN THE HVHZ ONLY. DEFLECTION LIMITS CONSIDERED FOR USE IN THE HVMZ ARE: 2.1. L/BD FOR SPANS 51210' 2.2. U380 FOR SPANS > 12'-0- OTHER CONSIDERATIONS: I. FROM OVERHANG MAY BE UP TO T-0' WITH VALUES LISTED HEREIN. MAXIMUM UNSUPPORTED SIDE OVERHANG IS 25% OF LAST PANEL WIDTH (i.e. 12' MAX FOR 48' PANEL WIDTH). N SSS8 O D d m o S _j N no m