Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutSTRUCTURAL CALCULATIONry
F�-
U)
z
F-
U)
w
M
5tructural Calculati,on
SCANN20
BY
St. Lucie County
Job Number: 09-935
Date: May 07,2009
Job Name � Addre55:
INTERNATIONAL AIRPORT E3U51NE55 PARK,
325 1 5t. Lucie Blvd.,
ffort Pierce, floragAA
ENGINEER Of RECORD:
AEC Services, Inc.
bcen5e: #9277
Q5:#0011445
I G I G ALL15ON W001)5 LANE
TAMPA, FL 33G 19
(513)G84-1 234
(813)G84-2GGO (f)
WWW.
KUN r-AIK, r.r.
-ft #50738
I
Design Wind Pressures For OPEN Structure Using the ASCE 7-05 Date: 5-7—'2009
With Roof Angle between 0 and 5 degrees
Client: AEC Services Job: 09-935 40'X 75'Canopy
1616 Allison Woods Lane Tampa Florida BEST Industries Inc.
—Pr6pared By: TOMAS PONCE P.E. SiteAddress: INTL. AIRPORT BUSINESS PARK
3251 St Lucie Blvd.
Fort Pierce, FL
Structure: Canopy Wind Speed (3-sec Gust) Importance Facto Exposure Cateno
2 Lile
STEEL MOE V3:= 140 1:= 1.0 C
hr
E := 29000.ksi
Structure Parameters: Symmetrical, No expected Torsion
Canopy Heigh Total Height: Dead Load Live Load
L:= 75-11 hfascia:= 7.16-ft bcolumn:= 15-ft H:= heolumn + hfascia DLr:= 8-psf LLr:= 30-psf
W:= 40-ft Slope:= 0-deg If= 22.16 ft
SQUARE Column Used: COL:= 4 Cohunn:= COL — S COL
C:= C—SCOL X:= 71—SCOL DLcoi:= DL—SCOL AC:= A — S COL IX:= I—SCOL
S:= S—S COL r:= r — S COL Z— Z — S COL
mt�- n?l
Column = "HSS 10" X 10" X 1/2"
. Size Weigh X- Sec Area \ect Pro ert as
2 4\ 5 3 3
C= 10in DLco, = 62.3 Of AC = 17.2 in Ix = 25 = 51.2 in r = 3.86 in Z = 60.7 In.
NumberofRows NumberperRow NumberofColumns ColumnSpacing
Nrows:= 2 Neel:= 3 NC:= Nrows,Ncol OCL:= 26-ft
NC = 6 OCW:= 16-ft
L = 75ft W=40ft
OCL = 26ft
Side View
hfascia = 7.16 ft
heolumn = 15 ft
OCW= 16ft
End View Page I of 119
Determine the Velocity Pressure q
Mean Roof Heigh
Gust Effect Facto
Topociraphic Facto
Directionality Factor
lI:=hcoIUMn h=15ft
G:= 0.85
Kzt:= 1.0
Kd:= 0-85
Velocity Pressure Exposure Coefficients
Table 6-2: Exposure C
o:= 9.5 900-ft
Z9
1:= 500-ft c:= 0.20
8:= -L 2�nin:= 15-ft
5.0
Table 6-3: Kz
A, 2
z:= H z = 22.16 ft
L15 - fit ) ct Q
Kz:= if
z < 15.ft' 2.01.
12.01.(-L)
(
Kz = 0.922
Z9 )
Z9)
-
Velocity Pressure q
2
qh:= 0.00256.KZ-Kzt.Kd'V3 . I-psf qh = 39.3 psf
Determine the Design Wind Loads on Open Buildings with
Monoslope, Pitched, or Troughed Roofs
MWFRS using ASCE 7-05 Section 6.5.13.2
Net Pressure Coefficient
I
Wini
.Y=0
L
1 0.5 L 0.5 L
=C-I r-�I
h = 15ft 1 It 0
C. I Wind
I Direction
b
fmm
Windmrd
Edge
Wind Direction
T-900
NJZM�
Transverse Wind -j = 0 or y = 18, Longitudinal Wind Y = 90
1 .00 �w
0 := Slope Clear Wind Flow
Roof Angle Load Case Transverse Wind Direction: Longitudinal Wind Direction: Horizontal Distance
Windward Leeward Load Case from Windward Edge
0 = Odeg A CTANW:= 1.2 CTANL:= 0.3 A B
B CTBNW:= -1-1 CTBNL:= -0-1 CIAN:= 4.8 ClBN:= 0.8 d:9 It h = 15ft
C2AN:= -0.6 C2BN:= 0.5
C3AN:= -03 C3BN:= 0.3
h:5d:92-h 2-h=30ft
d �: 2-h
Page 2 of 19
Transverse Wind Downward and Uplift Forces on Roof
Downward Pressure Uplift Pressure
Windward Leeward Windward Leeward
qh,G CTANW + qh.GCTANL qh-G CTBNW + qh-G CTBNL
pTdown:' 2 PTuplift:� 2 pTdown = 25.1 psf
pTuplift = -20.05psf
pTdown = 25.06psf pTuplift = -20.05psf WIND ----=>
Downward Force Uplift Force
Frd:= pTdown-L-W Fruj:� pTuplift*L,W
Flrd = 75.2 kip Fru, = -60.1 kip
Longitudinal Wind Downward and Uplift Forces on Roof
Distances of the Three Different Zones of MWFRS Measured From the Windward edge
dl := h dI = 1511 d2:= 2-h - h d2 = 15ft d3:= L - 2-h 0 = 45ft
Downward Pressure
d!5 h h!9 d --� 2-h d �: 2-h
pLIdown:= qh.GClBN pUdown:= qIl-G C213N
P"down = 26.73psf pL2down = 16.7psf
Downward Force
FLdl:=pL'down.dl.W FLd2:=PL2down-d2-W
FLd I = 16 kip FLO = 10 kip
d �5 h
pLIUL:= qh-GCIAN
pLIUL = —26.73psf
FLIUL:= pL'UL.dl.W
FLIUL = —16 kip
PL3down:= qh-GC3BN
p0down = 10.02psf
Total Downward Force
FLd3:= pUdovm-O-W FL — FLdl + FLd2 + FLO
FLd3 = 18 kip 44.1 kip
Uplift Pressure
h !� d:9 2-h
pL2 UL;e
PL2ULT20-Usof
Uplift Force
FL2UL:= pL2UL-d2-W
FL2UL = -12 kip
From 0 ft to dl = 15 ft
From dl 15 ft
to 2-h 30 ft
pLIdown = 26.7 psf
pL2down = 16.7 psf
pLI UL = -26.7 psf
pL2UL = -20 psf
WIND
0011,10Y 1%
%Mlf d �t 2-h
pL3UL:= qh-GC3AN
From 2-h=30ft
to L=75ft
PUdown = 1OPsf
pL3UL = -10 Psf
pL3[jL = -10.02psf
FL3UL:= pL3UL-d3-W
MUL = -18 kip
Page 3 of 19
Determine the Design Wind Loads on Fascia
MWFRS using ASCE 7-05 Section 6.5.12.4
Windward Fascia Leeward Fascia
-GCWpn.:= 1.5 GCLpn:= -1-0
VrmdDkmdan
deloff used to Develog External Pamet qW
t
AVINO wMa rorce Kesmung bysuaw ana Lmniponeras ana
Combined Net Pressure an Windward Fascia
PWf:= qh.Gcwpn
PWf = 59psf
Force in the Transverse Direction
vrfascia:= (Pwf - PLf).hfascia-L
FTfascia = 52.8kip
Combined Net Pressure on Leeward Fascia
PLf:= qh-GCLpn
PLf = -39.3 psf
Force In the Lonaltudinal Direction
FLfascia �� (Pwf - a'w
FL,. -20
ek,
Total Lateral Force On Fascia
Ffascia := FTfascia F. fascia = 52 1, p %ZOO#
Determine the Design Wind Loads on Fasc
I
C&C using ASCE 7-05 Section 6.5.12.4.4
.............................................. . ..... . ..... ------
Use wall pressures from Figure 6-11A Assume Worst Case of 10 scift area
Internal Pressure Positive Pressure Coefficient Negative Pressures From Zone 4 and 5
GCpi:= 0 No cavity
Velocity Pressure
qp:= qh
was evaluated
at H = 14 feet
GC P-P := 1.0
Load Case A
Front Side Back Side
pFSA:= qp.GC P-P pBSA:= qp.GC pj
pFSA = 39.3 psf pBSA = -55 psf
GCP-A:= -1.1 GCpj:= -IA
Load Case B
Front Side Back Side
pFSB:= qp-GC pj pBSB:= qp-GCp_p
pFSB = -55 psf PHSB = 39.3 psf Page 4 of 19
Determine the Design Wind Loads on Columns
MWFRS using ASCE 7-05 Section 6.5.12.4
................... . ... . ..................... . ......
Column Dimension Force Coefficient Cf h/D Ratio Interpolate Figure 6-21 Values
C = 0.83311 h/D 1 7 25 111COI X1 Y1 hcolumn
Cf 1.3 1.4 2.0 C 18 Cf:= linterp (X1,Y1, C
14
25H 2 M*O Cf = 1.767
Wind Pressure Col Surface Area Wind Force on (1) Column Wind Force On all Columns
PC:= qh'G'Cf Af:= C*hcojumn Fwcojumn:= qh,G,CrAf Fcolumn (Ncol + Nrows)'Fwcolumn
PC = 59 PSI` Af = 12.5 ft 2 FwcoluFnn = 0-74 kip Fcolumn 3.7 kip
Determine the Design Wind Loads on Roof
Components and Cladding (C&C) using ASCE 7-05 Section 6.5.13.3
.................................................................................................................................
End Zone Distance
numl:= min(O.10-W, 0.4-h) numl = 411 nuvn2:=max(O.04-W,3-ft) nurn2=3ft
a:=if(numI<num2,num2,num1)a=4ft
END:=2-a END=8ft
L = 7511
a a=4ft
a
2-a = Sit
2 3
a I a a=4ft
L 2.a= 811
0 = 0
NET PRESSURE COEFFICIENTS
Effective Area Zone 3 Zone 2 Zone I
A:� a 2 a 2 = 16 W ClN3p:= 2.4 ClN3n:= -3.3 CIN2p:= 1-8 ClN2n:= -1.7 CN,p:= 1.2
* 2 -< A 5 4a 2 4-a 2= 64 ft 2 C2N3p:= 1.8 C2N3n:= -1.7 C2N2p:= 1.8 C2N2n:= -1.7 CNln:= -1.1
* 2 --� A C3N3p:= 1.2 C3N3n:= -1-1 C3N2p:= 1.2 C3N2n:= -1-1
Component and Cladding Pressure Equation
qh = 39.3 psf Velocity Pressure at h
Pec = qh.G'CN G = 0.85 Gust Factor
CN Net Pressure Coefficient
Page 5 of 19
G
Components and Cladding Roof Pressure
Comi3onent/Cladding Area
Zone 3 Gravity/Uplift
Zone 2 Gravity/Uplift
Zone 1 Gravity/Upli
2 2
'For A <-
pl—Z3—Pos,, = 80.2psf
pl—Z2—Poscc = 60.1 psf
pl—Zl—Posee = 40.1 psf
—2 =-16ft
pl—Z3—Negcc = —110.2psf
pl—M—Nekc = —56.8psf
pl—Zl—Negcc = —36.7psf
2 2
Pz--V�-poscc = 60.1 psf
p2_Z2_Pos., = 60.1 psf
pLzl—poscc � 40.1 psf
For A < 4-a = 64ft
pZ__Z3_Negcc = —56.8 psf
pZ__Z2_Negcc = —56.8 psf
p2_Zl—Nekc = —36.7psf
2 2
p3—Z3—Poscc � 40.1 psf
p3_Z2_Poscc = 40.1 psf
p3_Zl — Pos cc = 40.1 psf
For A —> 4-a = 64ft
p3LZ3LNegcc = —36.7psf
p3_Z2_Negcc = —36.7psf
p3LZ1—Negcc = —36.7 psf
DecklngSlze W-16-in=S3.333ft 2
a
Page 6 of 19
Gravity (Dead Loads) From The Canopy Deck
Fascia
Fascia:=: 3. lbf DLFascia:= Fascia.hfascia
2- -
Outrigne
Outrigger:= 3-lbf oCoutrig:= 32-in
Angle Stiffeners
Angle:= "L 2.511 X 2.5" X 3/16"
Decking
DLdeck:= DLr
Moutrig:= Outrigger
Ocoutrig
DLFascia � 21A8 lbf
. ft
DLoutrig = 1.125 lbf
ft
lbf
Mangle:= 3.06- ft
Lbf
DLdeck = 8 2
Column Loading (ASDI Tributory Area For Each Column
LLr=30psf DLr=8psf Trib A W Trib�Acol = 520ft 2
- col:= OCL. 2
Dead Load on Each Column Live Load On Each Column Wind Load on Each Column
Pe DL:= DLr-Trib-Ac0l Pe LL:= LLr-Trib-Ac0l Pc - WLI:= pTdown-Trib-Acol
Pe-DL = 4.2 kip
t
Pc WL1 131 kip
Pq LL = 15.6 kip
r P _AJ
c-WL2;= P co
P MCC 2
Downward
Uplift
Page 7 of 19
Find Moment at Bottom of Column Due To Main Force Wind
Ffasda�52*8kip
Fe—olumn = 3-7kip
Base Moment
Ffascia*(H — blascia) + Fcolumn, healunin
MB:= — 2 ) 2 MB 168ft-kip NC 6
NC
Axial Force On A Single Column To Size Footing For Soil Bearing Condition (ASO
Pc—DL � 4.16 kip Dead Load on Each Column PDL:= Pc—DL + DLeol, heolunin PDL = 5.095 kip
Pc—LL = 15o6 kip Live Load On Each Column PLL:= Pc—LL PLL � 15.6 kip
Wind Load On Each Column
Pc—WLI � 13.029 kip Use Highest Magnitude for PWL:= PC—WLI PWL = 13.029 kip
Pe—WL2 = —10A24 kip uplift and gravity
P—asd—LC2:= PDL + PILL P�_asd_]LC2 = 20o7 kip
P—asd—LC5:= PDL + PWL P�_asd—]LC5 = 18.1 kip
P—asd—LC7:= 0.6oPDL + PWL P�_asd—LC7 = 16ol kip
P—asd—LC7B:= 0.6-PDL — PWL F�_asd—LC7B=-10kip <==Critical Load cas ForFooting
Windin I! ondition
P—col—asd:= max(P�_asd—LC2, P—asd—LCS, P—asd—LC7) P_col—asd = 20.7 kip
R.nrfinn.Rtrpccfnrii,rariAtThaRnconfFnr-hrniiimnfmm-RpmirpL
MB P col asd
fhend:= — + � fbend
S AC AM
Footing Size tl,b:= 2-ft
Square Bsq:=7.5-ft Bsq=7.5ft' Depth:= 5-ft
Axial Force On A Single Column LRFD Load Combinations
DL:= (DLeWheolunin + PDL) LL:= PLL
Pu—LCI:= IADL
Pu—LC2:= 1.2DL + 1.6-LL
Pu—LC4:= 1.2DL + 1.6-WL + LL
Pu—LC6:= 0.9DL + 1.6-WL
Pu—LC1 = 8.441 kip
Pu—LC2 = 32.195 ldp
Pu—LC4 = 43.682 kip
Pu—LC6 = 26.273 kip
Footing Dead Load
2
DLfooting:= 150"b—f -Bsq Depth
ft 3
DLfbotlng = 42.188 kip
WL:= PwL
PU:= max(Pu—LC1,pu—LC2,pu—LC4,Pu—LC6)
PU = 43.7 kip Page 8 of 19
Interaction Ecluations for HSS Steel Column Usinci LRFD Fy_gSS:= 42.ksi
Column = "HSS 1011 X 1011 X 1/211 E = 290OOksi
Ob:= 0-9 Oc:= 0-85
Column Data From Table 1-12
Slenderness Moment Of Inertia Section Modulus Radius of gyration Plastic Modulus
A. = 18.5 Ix = 256in 4 S = 51.2 in 3 r = 3.86 in Z = 60.7 in 3
Check Compactness
I p := 0.0714- E X p = 49.3 7, = 18.5
FY_HSS
Noncompact Section
).r:= 0.309. E ;Lr = 213.4 1 = 18.5
FY_HSS
Q := if 491r, 1.0, 0.0379-E Q=1 X pp := 0.448. E 71 pp = 309.3 a X = 18.5
(26 FY_HSS.X 3) FyjISS
Critical Load
!Lo�fFy H*S
. y _ $S 12LC = 0.5,65
r.7c E
Q.;L 2) 0.877
Fer -,,IQ 15 1.5, Q-(�.658 c)*FyjSS 2 Fy -HSS
21C
Axial Load Capacl A6plied Fact"ed ead� tenderness Parameters
pn:= �c.Fcr.AC Pu f43.% kx:= 1 ky:= 1
...,3 %,_�A
Opn = 537.3 kip
Nominal Moment Capacity
Mn HSS:= if X 2L P, FY_HSS.Z, (0.0207. E + 1�.F HSS'S11
I I ( X FyjSS ) Y-
P u
Opn - 0.081 < 0.2 ==> Use Equation 7.1.2 F I rom. LRFD HSS Design
Interaction Equation
Pu + MB = 0.92 < 1.0 OKII
2.�Pn h'Mn_HSS
kx*hcolumn
- = 46.6 200 OK
r
MnHSS = 212Aft-kip
Page 9 of 19
5
Design of Isolated Column SQUARE Footing
Code: ACI 318 - 05 Prepared By: Tomas Ponce PE
Factored Load Steel Yield Bar Size Concrete Bearing Plate
Pu = 43.7 kip ly := 60.ksi bar:= 5 fC:= 2500-psi BP:= 18-in Square
Footing Size Depth of Bars Column Width Eccentric! Allowable Bearina Pressure
B:= Bsq d:= Depth - 4-in c:= C MB qallow:= 2000-psf
B = 7.5ft t:= Depth c= 10in P-col-asd
cover:= 3-in e = 8.12 ft Bsq
— 11.25in
8
Maximum Soil Pressure
P-col_asd = 20.7 kip
Maximum Allowable Load To Reach Soil Bearing Pressu
P col sad 6*MB
qmax:= � + —
Bsq 2 Bsq 3
Reoulred Reinforcement
Asreq:= 0.0018-B-d
Asreq 9.07 in 2
qmax = 2757psf OR
w
Bsq MB )
P:= i.qaHow'(3-_ _ - -- Bsq
2 2 i�coLasd)
P = 23.5 kip ]?�_col-asd = 20.7 kip
ement Provided
foot:= 30
Nfo t
-�� = 15 @ 4" OC Top
2 and Bottom
As:= Nfoot-BarNo5
As = 9.3 in 2
Page 10 of 19
K
Desiqn of Isolated Column CIRCULAR Footin
Code: ACI 318 - 02 Prepared By: Tomas Ponce PE
Factored Load Steel Yield Bar Size Concrete Bearing Plate
PU = 43.7 kip fy = 60 ksi bar= 5 f1c = 2500 psi BP = 18in Square
Footinci Si Depth of Bars Column Width Eccentric! Allowable Bearinci Pressure
Beir:= 8-ft d 56in c = 0.833 ft MB qa1low � 2000psf
t 60 in c= 10in P—col—asd
cover= 3 in Bcir
e = 8.12 ft — = 121n
8
Axial Load On Column
P_col_asd = 20.7 kip
Maximum Allowable Load To Reach Soil Bearing Pressu
4-P col asd 32-MB P:= 1qa11ow'(3-.jc1r _ __!B__).Bcir
qrnax:� � + — qroax = 3754psf 2 2 P ol asd)
n-Bcir 2 u-Beir 3 OR _jc —
P = 31.1 kip P�_col—asd = 20.7 kip
Required Reinforcement
Asreq:= 0.0018-Beir*d
Asreq = 9.68 in 2
00 eincement Provided
Nfoot:= 32
Nfoot — 16 @ 4" OC Top
2 and Bottom
As:= Nfoot-BarNo 5
< As = 9.92 in 2
Page 11 of 19
Total Uplift
Longitudinal Wind
IJLLW:� [pLlUL-dl + pL2UL.dI + pL3UL-(L - 2.h)].W ULLW = -46.1 kip
Transverse Wind-
ULTW:= Frul
Maximum Uplift
UL max:= Min (ULLW,ULTW) ULmax = -60-1 kip
Base Shear (Transverse)
VT := Ffascia + Fcolumn VT = 56 kip
Base Plate Number of Bolts
D'mBolt:= 16-in N:= 4
Direct Shear
Vbolt:= 1.1.6
N
SOLT
Bolt Diameter
db.:=
5
--M
8
-in
4
-in
8
R 1 UU in
VbOlt = 4kip
j:= 1.. 5
Bolt Area
2
Ab := :��
4
�0.31
OA4
Ali 0.6 n2
0.79
,1.23
ULTW = -60.1 kip
Uplift Per Column
UL a
UL:= 0.6.(DLfootino + NC
Base Shear Per Column
VT
V:= — V = 9.4 kip
NC
Diagonal
Diag:= Vf-2.DimBolt
Moment About Base
M:= 1.6-MB
Tensile Force On Bolt
M -UL
Diag N
bolt
Vi Abj
z
F 'J_ := if 9.ksi - 2.5-f Vi :5 45-ksi, 59-ksi - 2.5.fv,,45-ks) > 45.0 ksl
�Ft i := 0.75-Ft i
21.2)
283
OFt = 32:5 ksi
33.8
,33.8)
T
N-Abj
Must '113.1
B e 785
> ft = 57:7 ks!
44.2
,28.3
==> 1 - 1/4" Bolts are ok
Diag = 1.9ft
M = 3226 in -kip
UL = 15.3 kip
'= 139 kip idolnhk. RN(
CIO
'12.3
8*5
fV = 6.3 ksi
4.8
,3.1
'28.3
37.7
Ft = 43A ksi
45
45
Page 12 of 19
P
Check Thickness of Base Plate
hcolumn � is ft OPR = 537.3 kip
B:= D'mBolt N:= B
B 16in
in N — 0.95-C m 0.27111
2
n:= B — 0.8-C n 0.333 ft
2
2
n' := NFC n' 2in
5
1:= max(m,n,X-n') I = 0.333 It
2, P"
t := I --_
min -[Z9 36 . ksi--B.N
tmin = 0.411 in 3/4" Plate is good
Pu = 43.682 kip
pu = 537.271 kip
4-C-C Pu
X:= X = 0.081
(2.C)2 �Pn
26:= 2.NFX X = 0.291
1 + NF, --x
7,-nl = 0.582in
Page 13 of 19
Loads on Beam Bl: Equal Overhanas On Both Ends
Unbraced Length for Beams Lb:=OCW Lb=16ft SpanBI:= Lb OHB1:= 12-ft Fy:= 50-ksi
lbf 3 4
Beaml:= "W14 X 4811 �m -n-Bl:= 232-ft-kip DLB1:= 48-- ZK Bl:= 78.4-in IB1:= 485-in
ft
Tributary Area Uniform Loading From Decking Placed on Beam B2
lbf
TribBl:= OCL WBIdeck:= DLdeck*(TribBI) wB1 deck= 208 ft
Dead Load On Beam (Includinci Self Weigh Live Load
Lbf bf
DI, Bl:= DLBI + DLr-TribB, DL BI = 256 LL Bl:= LLr-TribB, LL BI = 780L-
ft ft
C&C Wind Force Pressure (Worst Case
wcc:= P_V�_Poscc Wcc = 40.1 PSf wCC BI:= WCC TribBI wCC B1 = 1042A Lbf Apply Downward
ft on beam B1
Moments Generated
DL—BI.OHBI 2.
NIDL_Bl:�' 2
Dead Load
MDL_BI = 18.4ft-kip
LL-BI.OHBI 2.
MLL-Bl:= — 2
Live Load
NILL-BI = 56.2ft. kip
-'2.
MW Bl:= WCC BFOHBI
2
Wind Load
MW_B1 = 75ft-kip
NIBI LC1:= 1.4-MDL BI -9 25.8ft-kip
MBI-LC2:= 1.2'MDL_BI + 1.6-MLL-BI
MBI-LC2= 112ft-kip
MBI-LC4:= 1.2'MDL-BI + MLL-BI + 1.6.MW-Bl
MBI-LC4 = 198A ft-kip
MBI-LC5:= 1.2.M[DLB1 + MLL-BI
MBI-LC5 = 78.3 ft-kip
MBI-LC6:= 0.9.MDL 111 + 1.6.MW B1
MBI-LC6= 136.7ft-kip
MBI-LC7:= 0.9.MDL-Bl
KB1_LC7 = 16.6 ft -kip
Mu Bl:= max(MBI-LCI, M[BI_LC2, M[B1_LC4, MB1_LC5, MBI-LC6,
MB1-LC7) Mu B1 = 198Aft-kip
UnbracedLength Find Moment Capacity from AISC LRFD MANUAL
Lb 16ft Beaml = "W14 X 48" Omn-Bl = 232ft-kip
Zx B 1 78.4 in 3 Must Be > M[u_B1 = 52.9 in 3 SpanB1 = 16ft
1B, = 4851n4 E = 29000 ksi Fy 50 ksi
0.9-F Y
Equivalent Loadin-q Check actual Deflection
Deflection Limit
—
'vBl:= NILL Bl'2 wB,.OHB1 3
3) 2fE
2 ABI:= .(4'O"BI'.SpanBI - SpanBI
OHBI 24.E.IBI
+ 3.OHB, Alim:=
180
wBI � 780plf AB1 = 0.494in < Allm = 1.067 in
Page 14 of 19
I
Moment Demand in the Weak Axis Due to Wind Force On Fascia (Blaxiai Bendina
Moment Arm for Loads from Beam Centerline
. RBI := 1-0-ft RB1 = lit
Tributary Area Uniform Loadinci From Decking Placed on Beam BI Live Load On Beam BI
Tribweak:= 1-0-ft wBldeck:� DLdeck'(Tribweak) wB'deck = 8Lb-f LLB1:=LLr.(Tribweak) LLBI=30pif
ft
Dead Load On Beam (From Fascia) Live Load
DL_Bl:=DLFaseia+DLr'Trlbweak DLBI=29.48 Lbf LL-Bl:= LLr.Tribweak LL_B1 = 30Lbf-
ft ft
C&C Wind Force Pressure (Worst Case)
lbf Apply Downward
WCC:=p3_Z3LPoscc WCC=40.lpsf WCC_B1:=WCC.Tribweak wCC-Bi=40.1 ft on beam B1
MDL-Bl:= RB1'(SpanB, + OHB1).DL_B1
MLL-Bl:= RB,,(SpanBI + OHBI)-LL-Bl
MW_BI := RBI*(SpanB, + OHBI)'wCC_B1
Dead Load
MDL_Bl = 0.8ft-kip
MBI-LCI:= 1.4.MDL'-Bl
Live Load
MLL-BI = 0.8ft-kiP
MBI-LC2:= 1.2.MDL-BI + 1-6,MLL-BI
MBI-LC4:= 1.2.MDL-Bl + MLL-BI + 1.6.MW - B,
MBI-LC5:= 1.2.MDL-BI + MLL-BI
MBI-LC6:= 0'9'MDL-BI + 1.6'MW-Bl
MBI-LC7:= 0'9'MDL-BI
MM1_LC1 = 1.2ft-kip
MZ1_LC2 = 2.3 ft. kip
MB1-LC4 = 3.6ft-kip
MBI-LC5= 1.8ft-kip
MBI-LC6 = 2.5 ft -kip
MBI-LC7 = 0.7ft-kip
Myu-B I:= max (MB1_LC1, MBI-LC2, XB1_LC4, MBI-LCS, MBI-LC6, MBI-LC7) MYu_B1=3.6ft-ldp
muy:= myu-Bl
MuY = 3.6ft-kip
interaction ifouation
M ux muy
, — = 0.91
�bmx �bmy
Moment Demand about the Strong Axis
MUX:= Mu_B1
Mux � 19SAft-kip
1.0 BEAM IS GOOD
End Beam hold
100% of trIb Area
No middle beam
Beaml = "W14 X 48"
Moment Capacities
AISC LRFD Manual
ObMx:= Wn-B1
ObMx = 232ft-kip
�Wy:= 72-ft-kip
Page IS of 19
Loads on Beam B2 Overhang on One End
Unbraced Length for Beams LbB2:= 13-ft SpanB2:= 26-ft ORB2:= 12-ft
Bcam2:= "W16 X 26" Omn-B2:= 78-ft-kip DLB2:= 26. lbf
ft
Tributary Area Uniform Loading From Decking Placed on Beam B2
Trib := 7.33-ft wB2 DL Trib wB2 58.64 Lbf
B2 deck deck*( B2) deck ft
ZZ-112:= 44.2-in 3 IB2:= 301-in 4
Live Load On Beam B2
LLB2:= LL,.(TribB2) LLB2 = 220Lbf-
ft
Dead Load On Beam (Including Self Weigh - Live Load
DL-132 := DLB2 + DLr-TribB2 DL-B2 = 84.64plf LL-B2:= LLr.TribB2 LL-B2 = 219.9Lbf-
ft
C&C Wind Force Pressure (Worst Case)
WCC:= p3_Z32osee WCC=40.lpsf wCCB2:=WCC-TribB2WCCB2=293.9 lbf Apply Downward
ft on beam B2
Moments Generated Between Support
:= DEt_B2.x 2 2 ?120
MBSW 2-SpanB2 (SpanB2 OHB2 - SPanB2'X) IF Itt COP
Use Graph to find Maximum Moment Location
61 1 1 1 1 1 1 1 1 1 i I
4
MBSW
ft-kip
2
L L L
0 3 5 6 8 9 i'O i'l i2 13 ;4 �5 �6 i7 iS i9 i"O I i2 �3 24 25
x
x:= 12.5-ft
DL�W-x 2 2
MDL-W:� 2-SpaHB2 . (SpanB2 _ OHB2 _ SpanB2'x) MDL-112 = 4.2ft-kiP
1,L_B2.x 2 2
MLL-B2:= 2'SP`mB2 (SpanB2 _ OHB2 _ SpanB2'X) MLL-B2 = 10.9ft-kip
wCC�M'x 2 2
MW-B2:= 2-SpanB2 (SPanB2 _ OHB2 _ SPanB2'X) MW-132 = 14.6ft-kip
Page 16 of 19
Moments Generated From Overhang At Right Suppo
MDL 132;� DI�1]12 OHB22)
2
MLL_B2:� LL�W . (OHB22)
2
'VCC B2 2)
MW B2:= �' OHB2
2
Dead Load
MDL_B2 - 6.1 ft -kip
MDLB2 = 6.1 ft -kip
M[LL_ B2 = 15.8ft-kiP,
MW B,2 = 211 ft-kip
Live Load
MLL-B2 15.il ft -kip
<== THESE ARE LARGER
Wind Load
Mv�_]212 = 21.211 -kip
USE ASCE 7-05 Strength Design Load Combinations (Section 2.3.21 To Find Maximum Moment Demand
MB2-LCI:= 1.4.MDL-B2 MZ2_LCI = 8.5 ft. kip
M32-LC2:= 1.2.MDL-B2 + 1.6,MLL-B2 MB2-LC2 = 32.6 ft-kip
MB2-LC4:= 1.2'MDL-B2 + MLL_B2 + 1.6'MW-B2 MB2_LC4 = 57 ft.kii
MB2-LC5:= 1.2'MDLB2 + MLL-B2 p
.3ft-kip
MB2-LC6:, 0.9.MDL B2 + 1.6,MW B2 goo . 5#i
9955
MB2-LC7:= 0.9.MDL-B2 MB2-LC7 5.5 ft -kip
mu-B2:= max (MB2-LCl, MB2-LC2, XB2_LC4, MB2_LC5, MB2-LC6, MB2-LC7) Mu-B2=57ft-kip
UnbracedLength Find Moment Capacity from AISC LRFD MANUAL
LbB2 � 13 ft Beam2 = IIW16 X 2611 Wn-B2 = 7811-kip
ZX B2 � 44.2 in 3 Must Be > Mu_B2 = 15.2 in 3 SPanB2 = 26ft
0.9.17Y
Eaulvalent Loadin
NILL 132,2
WB2:= — 2
OHB2
wB2 = 219.9 plf
Check actual Deflection
'B2 = 301 in 4 E = 29000 ksi Fy = 50 ksi
AB2:= WB2'OHB2. (4-O'HB2 2 -SpanB2- SpanB2 3 + 3.01IB2 3)
24-E-IB2
AB2 = 0.056 in 4 Aiim = 1.733 in
Deflection Limit
Aiim:= 22E
180
Page 17 of 19
Moment Demand in the Weak Axis Due to Wind Force On Fascia (Blaxial Bending
Moment Arm for Loads from Beam Centerline
RB2:= 2-11 RB2 = 211
Tributary Area Uniform Loading From Decking Placed on Beam B2 Live Load On Beam B2
Y Tribweak:� 0'ft w]32deck:� DLdeck'(Tribweak) wB2deck � 0 Lbf LLB2:= LLr.(TribwealLLB2 = 0 Ibf
ft ft
,;4 Dead Load On Beam (From Fascia Live Load
DL—B2:= DLFascia + DLr'Tribweak DL B2 = 21.48 jbf LL—B2:= LLr-Tribweak LL—B2 = 0 jbI
ft ft
C&C Wind Force'Pressure (Worst Case
WCC:=p3_Z3_PosCC WCC=40.lpsf wCCB2:=WCC.TribwezWCC 0 IN Apply Downward
_B2 ft on beam B2
MDL1[12:� RB2'(SPaHB2 + OHB2) -DL—B2
MLL—B2:= RB2*(SPanB2 + OHB2).LL—B2
MW—B2:= RB2*(SpanB2 + OHB2)'wCC—B2
Dead Load Live Load
MDL_B2 = 1.611-kip MILL-132 = 0 ft'kP
opy
IndILE
MW_B2 = Oft'k'P
USE ASCE 7-05 Strength Design Load Combinations (Section 2.3.21 To Find Maximum Moment Demand
MB2—LCI:= 1.4'MDL—B2 MB2_LC1 = 2.3 ft-kip
MB2—LC2:= 1.2.MDL B2 + 1.6-MLL B2
MB2—LC2 = 2ft-kip
MB2—LC4:= I.2.MDLB2 + MLL—B2 + 1.6.MW—B2
MB2—LC4=,2ft-kip
MB2—LCS:= I.2.MDL_B2 + MLL-132
MB2—LC5 = 2ft-kip
MB2—LC6:= 0.9.MDL B2 + 1.6*MW B2
MB2—LC6 = 1.5 ft- kip
f MB2—LC7:= 0'9'MDL—B2
XB2_LC7 = 1.5 ft-kip
Myu—B2:= max (MB2_LCI, MB2—LC2, MB2—LC4, MB2—LC5, M[B2_LC6, MB2—LC7) Myu—B2=2.3ft-kip
Moment Demand about the Strong Axis Moment Capacities
Muy:= MYu_B2 MUX:= Mu B2 End Beam holds AISC LRFD Manual
May = 2.3 ft -kip 100% Trib Area bmx:= Min — B2
Max = 57ft-kip as middle beam ObMx = 78ft-kip
Interaction Equation
M ux May
= 0.85 1.0 BEAM IS GOOD
�bMx �bNfy
Beam2 = "W16 X 26" ObMy:= 19.6-ft-kip
Page 18 of 19
I
SUMMERY OF RESULTS
DeckingSize W-16-in=53.333ft 2
Decking Must Resist MWFRS Pressure
Gravity MRO
pLidown � 26.727 psf pLIUL = —26.727 psf
Decking Must Resist Component & Cladding Pressu
Gravity MRO
2 2
For A < 4-a = 64ft pl—Z3—posce = 80.2 psf pl—Z3—Nekc = —110.2psf
Fascia Must Resist Main Wind Pressure
Pwf = 59 pSf
Fascia Must Resist C&C Pressure
Front Side Back Side
pFSA = 39.3 psf PBSA = —55 psf
COLUMNS
Column = "HSS 10" X 10" X 1/2"
Beams
BeamI="W14X48" MainBearns
Beam2 = "W16 X 26" Purlins (MUST BE LATERALLY BRACED AT MIDPOINTS)
SQUARE FOOTING SIZE Depth Of Rebar Total Depth
BSq = 7.5ft d = 56in Depth = 511
Reinforcinq Bars
bar= 5 @ 4" OC Each Way Top and Bottom
Anchor Bolts:
(4) 1 1/4" ASTM A307 Bolts W' LONG
Base Plate Thickness
train = 0.41 in 3/4" Thick Base Plate Is OK
ROUND FOOTING SIZE
Bcir� 8ft Diameter
Page 19 of 19