Loading...
HomeMy WebLinkAboutAXIOM ENGINEERING PAPERWORKx IBM ENGINEERING, INC. June 4, 2007 St. Lucie County Code Compliance Division 2300 Virginia Avenue Ft. Pierce, FL 34982 RE: Design Comments Kiel/Doran Residence 703 Ramie Court, NE Port St. Lucie, FL 34952 Axiom Engineering Project No: 5765-404 To Whom It May Concern: SCANNED BY St. Lucie County Axiom Engineering has reviewed the comments for the above -captioned project and is providing a list of responses to each of the comments provided by your building department. In addition, Axiom Engineering has provided the plans and documentation, including pertinent sections of the Florida Building Code 2006 Revised Edition and calculations. Please review the following responses: • Structural Review Comments 1) Comment: F.B.P.E. Rule 61G 15-23.001, Engineer seal change 02/05/2004. Contractor to resubmit all plans and associated documents with current engineer's seal requirements. Response: All revised plans and associated documents have the correct seal. 2) Comment: Engineer to fill out the project name and address on the "St. Lucie Wind Load Compliance Sheets" in duplicate. Response: Axiom Engineering has duplicated the wind load information onto the "St. Lucie Wind Load Compliance Sheets. 10211 West Sample Road, Suite 106, Coral Springs, FL 33065 Office: (954) 757.8666,• Fax: (954) 757-7004 *Toll Free: (800) 894-1991 www.AxiomEngineer!nginc.com St. Lucie County — Code Compliance Division June 5, 2007 Page 2 of 4 3) Comment: All plans and specifications must be designed to the 2004 F.B.C. w/ the 2006 revisions, "note on plans or by letter" duplicates. Response: Plans and calculations have been modified to incorporate the 2004 F.B.C. w/the 2006 revisions and notes have been changed to include that wording. 4) Comment: Contractor to submit current, duplicate energy talcs, properly signed, in accordance with 13-600.3 A.B.C.3 F.B.C. 06 revisions for review. Response: Axiom Engineering has provided anew set of signed energy talcs. 5) Contractor to submit duplicate manual J talcs in accordance w/ F.B.C. 13-607.1 A.B.C.1 [2006 revisions] for review. Response: Axiom Engineering has modified the original manual J talcs in accordance with F.B.C. 13-607.1 A.B.C. 1. 6) Contractor to submit duplicate manufacturer's roof and truss layouts in accordance w/ F.B.C. R802.1.6 signed and sealed by the truss system engineer and reviewed and approved by the engineer of record. Design to the 2004 F.B.C. w/2006 revisions. Response: Contractor to provide required information. Engineer of record has not received layouts from contractor to date. 7) Contractor to submit duplicate manufacturer's ID, fasteners, design pressures, and required underlayment on the plans for the metal roof. I Response: NOA #02-080ZO2. Metal roofing information has been added to 11SIO & AISI0. 8) Primary egress door (front) must provide 29" clear opening. Chapter 11. See R-311.4.2 and R-311.4.4. Response: Double opening French doors at the entrance provide 59" of clear opening. R311.4.1 states, "not less than one exit door ...shall be provided for each dwelling unit. The required exit door shall provide for direct access from the habitable portions of the dwelling to the exterior without requiring travel through a garage. " R311.4.2 states "the required exit door shall be a side -hinged door not less than 3 feet in width and 6 feet 8 inches in height. Other doors shall not be required to comply with these minimum dimensions." St. Lucie County — Code Compliance Division June 5, 2007 Page 3 of 4 There are a total of (3) doors on the first floor and (1) door on the second floor that comply with the "exit door" requirements of the FBC. These doors are indicated in the door schedule on sheet 512. 9) Engineer to design the upstair, exterior guardrail system on the plans per F.B.C., Chapter 20 and F.B.C. loads 1607.7.1. Response: All guards and railings are to be detailed by others in accordance with sections R311.5.6 & R312 of the F.B.C. 2006 revised edition. Additionally, all guards and railings must be capable of resisting all live loads applied in accordance with section R301.5. Notes have been added on I/S7 and 2/S10. Specialty Engineer will provide shop drawings to be reviewed by the Engineer of Record 10) Engineer to design the upstair and downstair "screen wall infills" as shown on plans per F.B.C. Chapter 20. Response: Screen wall infills have been removed at the request of the homeowner. 11) Engineer to detail the interior stairway, guard and handrail system on the plans per R-311 & R312. Also include loads per 1607.7.1. Response: All stair stringers, guards and railings are to be installed by others in accordance with sections R311& R312 of the F.B.C. 2006 revised edition. Additionally, all stair stringers, guards and railings must be capable of resisting all live loads applied in accordance with section R301.5. Stair stringer, guard, and rail details,. including loads, have been added to S19. Specialty Engineer will provide shop drawings for the project to be reviewed by the Engineer of Record 12) Engineer to design the balanced return air system on the plans per F.B.C.M. 601.4. Response: This was previously included in the IIVAC note #15 on MI. Notes have been modified to further clarify this. 13) N.O.A. 01-0629.08 has expired and does not identify the clear opening requirements or the S.F. requirements for emergency egress on the first and second floor. Response: New N.O.A.s have been identified on the window schedule on S12 and copies are provided in calculation packet. Egress requirements have been added to the window schedule on S12. St. Lucie County — Code Compliance Division June 5, 2007 Page 4 of 4 14) N.O.A. 01-0629.08 has expired. "Please clarify in tables". Response: New N.O.A. # 05-1018.01 has replaced N.O.A. # 01-0629.08 and has been noted on window schedule on S12. 15) N.O.A. 01-0417.04 has expired. "Please clarify in tables". Response: New N.O.A. # 06-0807.07 has replaced N.O.A. # 01-0417.04 and has been noted on window schedule on S12. 16) Bath exhaust vents must terminate to the exterior of the building. Response: Notes have been added to plans on MI to clarify that bath exhausts are to terminate to the exterior of the building. 17) Dryer vent cannot connect to any ductwork. Please clarify on plans the design and dryer vent must terminate to the exterior of the structure. Response: Notes have been added to plans on MI to clarify that dryer vents terminate to the exterior of the building. They will share a dedicated dryer exhaust. In summary, Axiom Engineering has responded to each of the building comments as outlined above. If you have further questions or comments, please feel free to contact the undersigned at (954) 757-8666. Respectfully Submitted, Edwin M. Faeir Principal Engin State of Florida 6 2007 im Engineering, Inc. Nos. 46590 & CA 8421 Shawn T. Bunch Associate Engineer x I G �" � ENGINEERING, INC. CALCULATION COVER SHEET (REV. 1) File: 5765-404 Project: Structural Calculations SCANNED Tony Doran Residence BY 703 Ramie Court St. Lucie County Port St. Lucie, Florida Structural Calculation The purpose of this calculation is to analyze the structural components for the Design of the residence. The following structural components for the residence were analyzed: hurricane bracing, truss connections, windows, doors, concrete slab, and the foundation. This calculation follows the methodology of the Florida Building Code (2006 Revised Edition) and ASCE 7-02. The components have been designed to the following design criteria: - Category II - Exposure C - Basic wind speed 145 mph - Importance Factor 1.0 t - Soil Bearing = 2000 psf ' This calculation supports the design drawings prepared by Axiom -Engineering. 69 pages attached. JUN 6 2007 Prepared: Date: Shawn T4 Jf� Reviewed:j Date: JUN 6 2001 Jc Pai r Approved:---��—f/_(_ JUN 6 2007 Edwin M.Faenna State of Florida L' ense Numbers 46590 and CA 8421 10211 West Sample Road, Suite 106, Coral Springs, FL 33065 Office: (954) 757-8666 • Fax: (954) 757-7004 *Toll Free: (800) 894-1991 www.AxiomEngineeringinc.com , Q a P�eow S /'iSSc✓rn '�,c,n � �,oe,)�, - Oe-KekA. t�eSidE✓ c2 r` V06 . ` V"-ld eOAt ova ONG.C) = 2� psi. up),r L _ -s3. J�Gpsv wells t cocc�l�e__ 1 _ , %vo r L�ue = 4'U psi lc7� Com,�i+ne�'Fians (see ah�ci a,�) P'SDU� nn t� CCUrSFtua�i�[ 5iv,Ge Ir91�1�� de�� ��OD6 C O \e (��P dt-wen). i t l 1Svss CO✓�npL7iOns / h�t�2C G2� c.>Rl T1 c�/��;ors ll lSZ/,0 Cof7AV-jiO.A S use (��� !off ✓�a;ls , VSi,nc� (a) 3lLP��' lq6T-3 (re- -'o (! Ovo 01-lool,o3 oav, (4s-tj �3 PAP /GvSS CofiAgc• co (D;Cdtc- 6.2 (.iero Q +a c.3) Uq);C� Rear (OA. w: iS`i,63�1� CG�1�t2cTon 5 (00 VSI�� 11! )V,4 alTi (SIM 9003.-®) ) 6 1 r-g4i— !t e. i V1*� r�aofa(C ESof( .� eA'�a✓tSip✓i /�tv�c�oJ �/UGJF C)r-rC>UI,U3) . TG,iS Cow,���A'f';o�n Cti,v� �-�.SisT o�9aS'� t.., p O$g„ IIX Toss P6- l..on✓�2c�,or�s Use Cl) �;wipso� ✓l?e�a aU ( ✓vt aUpy-o1) 1417aa�� �a �rvsgTvSivc� C/9) L ✓✓I�C �l ��jj )✓+yi,, �U u('� �H+'Li �vl l�s �W71QIriG(IOIA .5WPV 5F, .fJj<M UAO� C?j,v�t ii ���! i° 5 ss�-� of 171Wy e�y �Id9E'SS �rt lid $ IA0.t( Suo'1 SSn� Wt U. QG� m isz$(L9g"S 2 C,mr os: -?f.y pi% �6f (1) MJA §&-(STe"pooyo)/ Oa c\ to �'_ 60\ t / C416 f &tJ & ) t, J/dn -,� (251,1-rs�s,w LAw� .-AI (( JTr 5 J (See ' 4 e vn�ma19�+0� troy �+nS�'v�nrC� r�pl c��itl l vO��lJvuq� SUrn,�or2��-�g,�dn �4n91 �l_�j bac�G Trusses �pli�i' CeaGtioviS ,dh.rt<FAvI 1 Connec�c��s ; (�S-� C7� Sir.��JSp� i-}�d <rjly/1 `o1f�J?.Tl3t 10d v�a;15 1�i s) l c_�1v �jiva�i/J� Cayn Ce-s <s� 9 L PocC GIna1�5;; i�t ��ic�rt551I Qec, Ar--T 761e /Ylrn T�raKneSS = 1 = ay = , �d75 16,g L IiV4�/UCy�; (116) Live w�Lab-2v6 �1� n n � I Mo'N•if`• ��.. � �� I I rnr • �i=�0�03�(w21 = /,07v3�( aO(� p)S�(a1 �? = G�3g�..� I�-S�� �4�) ( go 1 Ra vim' .I. n l l/ c 1\ _ Iv /r ria�SgJI BOG ply;; 6 IL • �zv�0 �rCJ XY l �v7 s,s �'"e nl , density = Pc,= Beta unitvridth (w) Actual beam depth depth to steel (d) _ bar size number of bars Area steel Fy a Rho minimum Rho actual Rho max Percent Rho x as ey 0.9Mn MAIN FLOOR SLAB 10.5" 135 Ib/ftA3 3 ksi 0.85 12 inches 10.5 inches 9 inches 6 1 0.44 inA2 60 ksi 0.87 inches 0.0033 0.0041 0.0160 26 1.02 inches 0.0234936 0.002069 17.0 ft-kips MINIMUM STEEL REQUIREMENT width 12 inches h to steel 3.25 inches (min) = 0.36 inA2 size No. of Bars Req'd 3 4 4 2 5 2 6 1 7 1 8 1 Note: Adjust based on to 1.41) + 1.61- (1) #6 Bottom AL • 9" • Is Rho actual >Rho minimum ? YES 1.5" Is Rho actual < Rho maximum? YES I 12 I (1) #6 Bottom Ises>ey? YES BEAM STRENGTH (from above) (from above) l��a�n ��aCysi � (/y�.e .� C'P✓1 LC; O 6 �ow•2 / GISSVr�^ 'z i1 X 116 ioa� ` lockvn 'C ye2 o,� o,,t ev1.) JiMpI� Sv7 �oC R1 �7�C C.vef cmis `��taac W E.li R�= s$a = CSi(55�7.6�/�)�o,si v 3��68•� � a g 2 0 ma/%w density = fc= Beta unit width (w) Actual beam depth depth to steel (d) _ bar size number of bars Area steel Fy a Rho minimum Rho actual Rho max Percent Rho x as ey 0.9Mn CENTER TYPE I BEAM 135 Ib/ttA3 3 ksi 0.85 8 inches 18 inches 16.5 inches 8 2 1.57 inA2 60 ksi 4.62 inches 0.0033 0.0119 0.0160 74 5.44 inches 0.0061072 0.002069 100.3 tt-kips MINIMUM STEEL REQUIREMENT Note: Adjust based on fc 1.413 + 1.61- Is Rho actual >Rho minimum ? YES Is Rho actual < Rho maximum? YES Ises>ey? YES BEAM STRENGTH twidth 8 inches (from above) )th to steel 16.5 inches (from above) (min) = 0.44 inA2 r size No. of Bars Req'd . 3 4 4 3 5 2 6 1 7 1 8 1 #8 Top 16.5" 1.5" (2) #8 Bottom sv�a�o — S'91 _ Xrow f7 - 5 rnq 5'9�9lL° 5A P ( At C S 911Csda0009�nu't(%� r i V P _ Se 'P _ ^A Ap Cs rg a5r?� �oa n'oa alo 5do-�7s � j 7 ` zw.5 S/h/,Cl1 79 5,90 6vv\ Qes;y� a '2vas V lOSvS#�sv S,4:v,s }o zap 1/-5Ya3# r l Sol�e �vr L 7- , n �3 SiSw(J5 �ccx/gJl �earvJ Kitr�.e,n S"�: i/ \ \ // / \\ /, ��n�b� lan0 fi T -T -T /� --I- v �'Ol `�AV i „a r`vll-, C-\VJ9 5d�I-ft S'hbl - M111v v b 'C01WI # 9/7 ,s�� tM d- tm I- -tt 1. =/`°1 �,eex of av�n sSb m GARAGE BEAM TYPE II density = 135 Ib/ttA3 fc = 3 ksi Beta 0.85 unit width (w) 10 inches Actual beam depth 22 inches depth to steel (d) = 20.5 inches bar size 10 number of bars 2 Area steel 2.45 inA2 Fy 60 ksi a 5.77 inches Rho minimum 0.0033 Rho actual 0.6120 Rho max 0.0160 Percent Rho 75 x 6.79 inches es 0.006052 ey Q.002069 Ises>ey? YES Note: Adjust based on fc 1AD + 1.6L Is Rho actual >Rho minimum? YES Is Rho actual < Rho maximum? YES I 0.9Mn 194.5 ft-kips BEAM STRENGTH MINIMUM STEEL REQUIREMENT unit width 10 inches (from above) depth to steel 20.5 inches (from above) As (min) = 0.68 inA2 Bar size No. of Bars Req'd 3 7 4 4 5 3 6 2 7 2' 8 1 #10 Top 20.5" (2) #10 Bottom 1S- ��Uv�n 1✓es�o,,� 69'1 V= V„ t35" J �Ve 4t, = 2 s1' ncf Vv > f 1pS� r;rvf s - r-e �2y� ;rf 1 rase 3 Sf:� s �V,-1 Vu S _Avg _ �aXll;na �OdU ps;Yve's ✓Y1ay. Spat �� �c provi.o�R— Mr,., AV SO 6w ( 50) (8"� a - '� govecn 5 1/�=aKr�lr" �d�= r6sstia� Cvn.cre� SD1v���j �oc L —ey (ID) 3 S [ru�s @ 9at e� l lac ev r 3.� R2 wd=(5533pJ& �'� i 1936�.5 TT U ,v7 ✓^/talli„= `P/'s density = Pc = Beta unit width (w) Actual beam depth depth to steel (d) _ bar size number of bars Area steel Fy a Rho minimum Rho actual Rho max Percent Rho x es ey 0.9Mn BEAM OVER BATH TYPE III 135 Ib/ftA3 3 ksi 0.85 Note: Adjust based on fc 8 inches 14 inches 12.5 inches 6 2 . 0.88 inA2 60 ksi 2.60 inches 1.4D + 1.61 0.0033 Is Rho actual >Rho minimum' YES 0.0088 0.0160 Is Rho actual < Rho maximum? YES 55 3.06 inches 0.0092655 0.002069 Ises>ey? YES 44.5 ft-kips BEAM STRENGTH MINIMUM STEEL REQUIREMENT twidth 8 inches (from above) )th to steel 12.5 inches (from above) (min) = 0.33 inA2 r size No. of Bars Req'd 3 4 4 2 5 2 6 1 1 7 1 8 1 #6 Top 12.5" 8" (2) #6 Bottom dcJ ern 0��; env MAY S�^�f �ra� 17 Gl a l 11 5, V„ >910le- 5J;«��s n edeJ lC/s4 3 S4c��5.✓ U� 7d�de5� J S = G Xv V ,7s rL bw so G�, ,/1�laX 5�ac„n� (fjCT JI.S. `/• IY �yp,e- '3 ) PkL6,0 � vv� 1).( N e) -�o iz, dSO 9r = M T �Se99�M v^Ya�t \Ao N -Ov �u V e density = fc = Beta unit width (w) Actual beam depth depth to steel (d) _ bar size number of bars Area steel Fy a Rho minimum Rho actual Rho max Percent Rho x as ey 0.9Mn 2ND FLOOR BEAM OVER GARAGE 135 Ib/ttA3 3 ksi 0.05 Note. Adjust based on fc 8 inches 22 inches 20.5 inches 8 2 1.57 inA2 ' 60 ksi 4.62 inches 2) #6 Top 1AD + 1.6L • 205' 0.0033 Is Rho actual >Rho minimum ? YES 0.0096 0.0160 Is Rho actual < Rho maximum? YES 60 5.44 inches 0.008315 0.002069 Is as > ey ? YES 128.6 ft-kips BEAM STRENGTH MINIMUM STEEL REQUIREMENT t width 8 inches (from above) rth to steel 20.5 inches (from above) (min) = 0.55 inA2 r size No. of Bars Raga 3 5 4 3 5 2 6 2 7 1 8 1 (2)#8 Bottom 60 May V= 91 - Va- May fj _ ,+ZK1'in�i(olJL?OU�S S© ✓YlAx. Spe�c;.'� L ,� Lb 7 g 79' 443 ifrLf es eyj -71 C-C QlbE Aphgc 4 i/ w njC� a� � ,L� r� (2voj X)?�J�1 I � I I�brvnw� �rolci - M Vd) #i��69l , l IP.) J J v �an1 p � X�o LVl a1� c��l< Cade oll W1�5f�55�31�vo95_)C6�;n'—�,77;h�)��OGtlops:��t,.'? n°)� � �t$ X 4v • p �' 3�� g©vec . s '.� P6�©vic�.2 Nli✓�. �LXg„ Co�vw„� wi�� �`/� �� ��5 1@ g 1 Me1 1Q e � �� �UvnG CUluwrt I s d25;1'ej 1000J;c�2 !�u�2 �e MlIiri. S pokcLJ aT -S" w #3 44e, Xg- 9\k M;n f \ J i g Aq 3tJs sir =-7+0 = M Unds 90 cyel Ll r rXFN� '35TV yl ,,, ,-V M density = Pc = Beta unit width (w) Actual beam depth depth to steel (d) _ bar size number of bars Area steel Fy a Rho minimum Rho actual Rho max Percent Rho x as ey 0.9Mn BACK PORCH SLAB SHORT SPAN 136 Ib/ftA3 3 ksi 0.85 12 inches 9 inches 5.875 inches 6 1 0.44 inA2 60 ksi 0.87 inches 0.0033 0.0063 0.0160 39 1.02 inches 0.0142944 0.002069 10.8 ft-kips MINIMUM STEEL width 12 inches :h to steel 5.875 inches (min) = 0.24 inA2 size No. of Bars Req'd 3 3 4 2 5 1 6 1 7 1 8 1 Note: Adjust based on Pc 1.21D + 1.61- 5.875" 3.125" Is Rho actual >Rho minimum ? YES 12" Is Rho actual < Rho maximum? YES (1) #6 Bottom Is es > ey ? YES BEAM STRENGTH (from above) (from above) (fla�� vi l4SS.s ol`a R, Ra l ri�,,,au i,rL 6`� WidL Sect:on � (j507i,7 ib-5}v gi\ = /(5 vAX density = fc = Bete unit width (w) Actual beam depth depth to steel (d) _ bar size number of bars Area steel Fy a Rho minimum Rho actual Rho max Percent Rho x es ey G)ElIn BACK PORCH SLAB LONG SPAN 135 Ib/ftA3 3 ksi 0.85 8 inches 9 inches 6.625 inches 6 1 0.44 inA2 60 ksi 1.30 inches 0.0033 0.0083 0.0160 52 1.53 inches 0.0100015 0.002069 11.9 ft-kips MINIMUM STEEL REQUIREMENT width 8 inches :h to steel 6.625 inches (min) = 0.18 inA2 size No. of Bars Req'd 3 2 4 1 5 1 6 1 7 1 8 1 Note: Adjust based on fc 1.213 ++ 1.61- 6.626" • 2.375" Is Rho actual >Rho minimum ? YES 8" Is Rho actual < Rho maximum? YES (1) fie Bottom Ises>ey? YES BEAM STRENGTH (from above) (from above) FRONT PORCH SLAB SHORT SPAN density = 135 Ib/ftA3 Pc = 3 ksi Beta 0.85 unit width (w) 12 inches Actual beam depth 5 inches depth to steel (d) = 2.5 inches bar size 6 number of bars 1 Area steel 0.44 inA2 Fy 60 ksi a 0.87 inches Rho minimum 0.0033 Rho actual 0.0147 Rho max 0.0160 Percent Rho 92 x 1.02 inches as 0.0043593 ey 0.002069 Is as > ey ? YES Note: Adjust based on Pc 1.2D + 1.6L 1 2.5' • Is Rho actual >Rho minimum ? YES 2.5° 1 12" Is Rho actual < Rho maximum? YES (1) #6 centered 0.9Mn 4.1 ft-kips BEAM STRENGTH MINIMUM STEEL REQUIREMENT unit width 12 inches (from above) depth to steel 2.5 inches (from above) As (min) = 0.10 inA2 Bar size No. of Bars Req d 3 1 4 1 5 1 6 1 7 1 8 1 AfcA,ness per I CY = s2 = (Ns�l —�)(99 —1 GSA, S ? J �„ �ilS�Lp�tion �%.Qa� I�S dK MAY 6?A , (se.e- al�e�e) ) MASTER BATH SLAB SHORT SPAN density = 135 Ib/ftA3 fc= 3 ksi Beta 0.85 unit width (w) 12 inches Actual beam depth 6 inches depth to steel (d) = 3.26 inches bar size 6 number of bars 1 Area steel 0.44 in12 Fy 60 ksi a 0.87 inches Rho minimum 0.0033 Rho actual 0.0113 Rho max 0.0160 Percent Rho 71 x 1.02 inches as 0.0065671 ey 0.002069 Is as > ey 7 YES Note: Adjust based on fc 1.4D + 1.6L Is Rho actual >Rho minimum ? YES Is Rho actual < Rho maximum? YES 0.9Mn 5.6 ft-kips BEAM STRENGTH MINIMUM STEEL REQUIREMENT unit width ' 12 inches (from above) depth to steel 3.25 inches (from above) As (min) = 0.13 inA2 Bar size No. of Bars Req'd 3 2 4 1 5 1 6 1 7 1 8 1 3.25" 2.75" 12" 1 \ (1) #6 Bottom density = fc = Beta unit width (w) Actual beam depth depth to steel (d) _ bar size number of bars Area steel Fy 6l) ksl 0.87 inches MASTER BATH SLAB LONG SPAN 135 Iblft^3 3 ksi 0.85 Note: Adjust based on fc 12 inches 6 inches 4 inches 6 1 0.44 in"2 1.4D + 1.6L 0.0033 Is Rho actual >Rho minimum ? YES 0.0092 0.0160 Is Rho actual < Rho maximum? YES 0.9Mn 7.1 ft-kips BEAM STRENGTH MINIMUM STEEL REQUIREMENT unit width 12 inches (from above) depth to steel 4 inches (from above) As (min) = 0.16 in"2 Bar size No. of Bars Req'd 3 2 4 1 5 1 6 1 7 1 8 1 CIA G'S8,✓S// t�l � ,CIO/ 31�.51-7G i ) sip -------------- 9 _ sszo�a'yl Q 2: density = fc= Beta unit width (w) Actual beam depth depth to steel (d) _ bar size number of bars Area steel Fy a Rho minimum Rho actual Rho max Percent Rho x as ey 0.9Mn MASTER CLOSET SLAB SHORT SPAN 135 IbtftA3 3 ksi 0.85 12 inches 6 inches 2.625 inches 6 1 0.44 inA2 60 ksi 0.87 inches 0.0033 0.0140 0.0160 88 1.02 inches 0.0047273 0.002069 4.4 ft-kips MINIMUM STEEL REQUIREMENT idth 12 inches to steel 2.625 Inches (min) = 0.11 inA2 size No. of Bars Req'd 3 1 4 1 5 1 8 1 7 1 8 1 Note: Adjust based on fc 1.21D + 1.61- 2..625" Is Rho actual >Rho minimum ? YES 3.375" Is Rho actual < Rho maximum? YES 12' (1) #6 Bottom Is es > ey ? YES BEAM STRENGTH (from above) (from above) density = fc = Beta unit width (w) Actual beam depth depth to steel (d) _ bar size number of bars Area steel Fy a Rho minimum Rho actual Rho max Percent Rho x as ey 0.9Mn MASTER CLOSET SLAB LONG SPAN 135 Ib/ftA3 3 ksi 0.85 12 inches 6 inches 3.375 inches 6 1 0.44 inA2 60 ksi 0.87 inches 0.0033 0.0109 0.0160 68 1.02 inches 0.0069351 0.002069 5.8 ft-kips MINIMUM STEEL REQUIREMENT width 12 inches h to steel 3.375 inches (min) = 0.14 inA2 size No. of Bars Req'd 3 2 4 1 5 1 6 1 7 1 8 1 Note: Adjust based on fc 1.21D + 1.61- 3.375" • Is Rho actual >Rho minimum ? YES 2 625" 12" Is Rho actual < Rho maximum? YES I (1) #6 Bottom Ises>ey? YES BEAM STRENGTH (from above) (from above) 3j, 07 ed�w.� �Xzo�Zr r - - I c3�: •. /�d70S I �3 ip�ndGf,or /�✓�al�s� (Wesl sA oC &4L 2 & ,, ) �p11Y"i `(' 1 �'�4m over � Qacl, 2 \learn over lLl1, 61_ uu L1150•� p1� l0,5� AL ��z• � — 1. �t S, S �a : loa�5 5�I3/, / tl3ao a, z -� ly�as y3�d41, 9VA Xvaw �s a a /3h 9 9 z° = 5ripo/77 �z i �99G t jam° _ (�� ��� �l, = wr✓aC'` vno5�a pool. /'8�1� � �,rssE��o9J-r-�R•ecs ��a'r�sr �. s��<,A � oo� YIN, 5w � a°t s / r ;sN /nw -D vno�� P�pr 3ldoi, �3sr�p�;�11% e PIP/ 11 » (( f ( �( s'/i�sl = sa�r) 3r �•sssl� � � = SQ�� M L.^rnJTdG J�c,t9v✓` Ja'/,Q O+%l� ✓kol vsn)s? p✓✓Q� �� ll I a ✓ 1 l Ord S�sv Vv LIU vsao1P7(i r 5 ✓l� qSArt'U� 0a 1�(>annP� 1 l l 1 r (/ 3' n y„a�r�G.�io,n AndSi� 94 �n"- ln/= L�io,s•,-1-���= 15`/1S�OI�t9G3�1�= ldsl�g�/l� 19teo-7L lIP219.: or-L 1 0'I Oo j �= �gUJlGcL7co� ��nA(��/s� s 1 boo `sec L/.nder GAfGt�2 (30—eIm-S lOcr/ corn care kU %\rd �looC I�.v JJ I- W'Q y,� c laGs ply �n Cms will Gos nn W" �'L,.b �cM 1iJ 1 gSD. pl w la�/S't05 = aog)a,S I 1 I 1 I I _ \5'S�\�SISI lat-ro'Jroa�� f 79�-5 09c� fM pto EYE Lh 1 - -C�V'� <,515 _s a v vi N 'itj41 F f .ram vo s fir Vl cn M ql k)o \` \ pAl 9 L 1 V o o Ilb �iuolb �,li 52 _ (.� e)�,IJ(3S�cJSI �iVfA �sr9 Ss = i"1 e 11 rM real 9 7r� vL' ,Slhr� ( ti a"•'r P" P i e �vw �a� on . Flna�ys s (1^Ear ?V(j, C^nv WeAll Cow l �I 1 L I 1935'x-f /�6s + 62 6 ` S64S- �- � loads �SGs9 � O— ;P 000 S ' allr3w Ae A a + 41 It v i W a k II A n'6 1 w (�J s � 91 W A O m 0 R/ 0 �1 1 CIS ii 1 � rrC GY 1 ST rinM• 2a 77 nD so y�.No�✓•O✓✓ ���r�� n� -10 JanoJ � J e � f �3sdC19l)( sib. Yr1� nn j I I I S �Sd 6�9/�1 arn552JCi „r, •, bl jib =? r V b,Sa0. 'S 1, �i /+2, v-5gaw(VI7) Sc' P�'IS�OGS JSGL 4/� lg�GL K17 _ ��k� 5b' ' ' �t 51 `O�� 3S�C9S/ = nn �'✓OZ aJ^l1n�J b�i.iY% — 100,4y -ITO) Od /l*in &1' sl ^n J'ba`i��+ Pt�SQ�'J1'✓�`�/1, ,�J1� .. PaJd�,�SU97 YJa,J'l% !'17Jri�llo�dns w.oJ� �i%P �i> �^\n3��'YJ 7M_ 9M!2L ---7 ,\\s h'Js \0-5�'Icn — Y, 6)\'"`✓:1u . A _ it t J s Si'O2 v 31,-ioJ 7/� > u oo' aMiJiaJ �-1,'�Jvn u E'bBI�IJ�� Pf"'�GBSS�l P uLf/� ` 1 ti('Sr�non019) is9.�..) /\ / 59 8A % /�>C \l �`���t1�Y�'J �v�v✓0{/�f Nlrjl��f'Cp ; Y / i S'GGL°09Z' _ („6)(,hg) nr3 1 II ✓✓ f r� ` � V �GrGe. (igrlS�C a� i✓IL2(�acc e>� C{jlurv,y a' 6rX�fiK 11 C�- r OIv4' {; 3ove) psf /aicfc, �✓ %�, Z/ Oeac%e� S�re✓��� 03 �Dlurnh �GZ !0,l71 ; �b _ �La7w,hl' ��/SUUUpS�(g`ifld �-// �30 vvU �� - = 3 F;� Y. 7B„ 'A10 ` (, t6 �C = p�tJYed' X 16 = 6 S` 'gv0 \ /y2ivj A = . ®OStR) )l (/ICI 7S14s,a.1) AsM,�=,UU���`k�6\�',�`l,n� �eveJ�.ren� le,nq�l, o� dowel baai �6 ,OU63���y b" C �db= (oai ,�S")(6000vo�;) _ l6, y3'� � Co✓r�c�i5 H A 9 �JLP1� tvC�� Ise L;ve log uo�� �lGX sRa� of Qen�; S?res5 error bl� = 9-75 �s fl-i /, w -73, a piP E C-c 16-74 //1 0� 4 - V,• 111 o� I MA Igo# X L-.%oo� �lo,.�able ✓lOcwa) i'o �ra;n = S6S �S� J Aw) (Ply along 1��2e�) Os P-eF .. v,�� %a'I� ]�g pl C -S2Leve A�c�ors ai0,1g ledccef :T?.s ¢a Mlahv�a�•'rvr�s S�a2e`5 . Cam `��� � � !1 a�� Sl�f' I voiy� efsvo✓/aatg ��/»mm��t/ �S1'jf �� %/�.� So a/q�y �wn�o� W,741 U w.n' I -)aP 5 �wn/fir SS ri �J � �25YJ� X✓JJ�// err ��a� ✓ i96 � e _ r ten( h 6— �d 1LAt2J4 ',i Window Schedule ROUGH APPROX. MARK PRODUCT RATED WIND PRESSURE DESIGN PRESSURE OPENING WINDOW ZONE IMPACT RESISTANCE PRODU TAPOVAL W X H SIZE (NOA) NOA) WXH PGT INDUSTRIES PW-701 60" x 30' IMPACT RESISTANT A ALUMINUM PICTURE WINDOW 80001-80 00 PSF 45.94460.20 PSF 60.75"X 90" HALF 4 STORM SHUTTERS ARE 03-1105.01 IMPACT RESISTANT WITH CIRCLE NOT REQUIRED 7/16" LAMINATED GLASS PGT INDUSTRIES PW-701 38"x18" IMPACT RESISTANT B ALUMINUM PICTURE WINDOW 80001-8000 PSF 48.081-62.93 PSF 36.75"X 78' HALF 5 STORM SHUTTERS ARE 03-1105.01 IMPACT RESISTANT WITH CIRCLE NOT REQUIRED 711W LAMINATED GLASS PGT INDUSTRIES SERIES 'SW IMPACT RESISTANT C ALUMINUM CASEMENT 562/-56.2 PSF 45.B4I�0.20 PSF 60.75'X 90' (2) 30'X 60" 4 STORM SHUTTERS ARE 02.1224.02 WINDOW IMPACT RESISTANT NOT REQUIRED WITH Sf1E' LAMINATED GLASS PGT INDUSTRIES SERIES "640' IMPACT RESISTANT D ALUMINUM CASEMENT 58.2/-66.2 PSF 47.26/.81.52 PSF 60.7S'X 60" (2) 30'X 60' 4 STORM SHUTTERS ARE 02-1224.02 WINDOW IMPACT RESISTANT NOT REQUIRED WITH 511V LAMINATED GLASS PGT INDUSTRIES SH•700 ALUMINUM SINGLE HUNG IMPACT RESISTANT E WINDOW IMPACT RESISTANT 99.61R1-69.6 PSF 46.08/.62.93 PSF 38.76'X 78" 3Vx60' 5 STORM SHUTTERS ARE 05-1011101 CHOICE OF GLAZING OPTIONS NOT REQUIRED A B. G. OR H PGT INDUSTRIES SH-700 ALUMINUM SINGLE HUNG IMPACT RESISTANT F WINDOW IMPACT RESISTANT 89.61-89.6 PSF 48.931.84.84 PSF 36.75" X 60' 36" X 60" 5 STORM SHUTTERS ARE 05-1018.01 CHOICE OF GLAZING OPTIONS NOT REQUIRED A. B. G. OR H PGT INDUSTRIES SH-700 ALUMINUM SINGLE HUNG IMPACT RESISTANT G WINDOW IMPACT RESISTANT 80.00/-80,00 PSF 48.SW-64.64 PSF 60.75"X 36' 60"X36" 5 STORM SHUTTERS ARE 05-1018.01 CHOICE OF GLAZING OPTIONS NOT REQUIRED A. BGORH PGT INDUSTRIES SH-700 ALUMINUM SINGLE HUNG IMPACT RESISTANT H WINDOW IMPACT RESISTANT 80.00/-80.00 PSF 47.SW-62.76 PSF 48.75'X ST 48"X60" S STORM SHUTTERS ARE 05-1018.01 CHOICE OF GLAZING OPTIONS NOT REQUIRED C, D. E F 1, J. K. L POT INDUSTRIES SH-700 ALUMINUM SINGLE HUNG IMPACTRESISTANT I WINDOW IMPACT RESISTANT 80.001.80.00 PSF 50.26/54.62 PSF 24.75%40° 24'X Ar 4 STORM SHUTTERS ARE 05-1018.01 CHOICE OF GLAZING OPTIONS NOT REQUIRED A,B G OR PGT INDUSTRIES 1"X 2.75"X IMPACT RESISTANT J 0.375" HEAVY WALL 100.001-100.00 PSF 47.281.51.52 PSF W' MULLION VARIES 5 STORM SHUTTERS ARE 06-0125.07 ALUMINUM TUBE CLIPPED (MAX PRESSURE) NOT REQUIRED MULLION _ PST INDUSTRIES VX 2.00"X IMPACT RESISTANT K 0.375" HEAW WALL 130.00/-130.00 PSF 48.93h84.64 PSF 38' MULl10N VARIES 5 STORM SHUTTERS ARE 05-0125.07 ALUMINUM TUBE CLIPPED (MAX PRESSURE) NOT REQUIRED MULLION DOOR SCHEDULE ROUGH DOOR SIZE PRODUCT APPROVAL MARK PRODUCT RATED WIND PRESSURE DESIGN PRESSURE OPENING W X H ZONE IMPACT RESISTANCE (N0w WXH DAB DOOR COMPANY, INC. IMPACT RESISTANT 1 58.00/b1.00 PSF 44.24/35.27 PSF VX T ex 7' 5 STORM SHUTTERS NOT 05-0915.08 SECTIONAL GARAGE DOOR REQUIRED POT INDUSTRIES SERIES FD- IMPACT RESISTANT 2 101 OUTSING ALUMINUM 75.001.75.00 PSF 45.34/-09.6D PSF 60°X 110° 80'X 80' 4 STORM SHUTTERS NOT 0&0807•% FRENCH DOORCHOICE OF REQUIRED GLAZING OPTIONS 1.4 POT INDUSTRIES SERIES FD- IMPACT RESISTANT 3 101 OUTSING ALUMINUM '�/"75.00 PSF 45.731-09.89 PSF 807C or60°X 86° 4 STORM NOT 060807,% FRENCH DOORCHOICE OF EQUIRERB REQUIRED GLAZING OPTIONS 1.4 POT INDUSTRIES SERIES FD- IMPACT RESISTANT 4 101 OUTSING ALUMINUM 75.001-75.00 PSF 45.13J-67.05 PSF 72'X or 72'X Or STORM SHUTTERS NOT 08-08%.% FRENCH DOORCHOICE OF REQUIRED GLAZING OPTIONS 1-4 PGT INDUSTRIES SERIES F0. IMPACT RESISTANT 6 101 OUTSING ALUMINUM 7`'• -75.00 PSF 45.71/-09. W PSF 72•X 80° 72'X 80° 4 STORM NOT 08 0807.% FRENCH DOORCHOICE OF EQUIRER9 REQUIRED GLAZING OPTIONS 1-0 PGT INDUSTRIES SERIES F0. IMPACT RESISTANT 6 101 OUTSING ALUMINUM 75.00675.00 PSF 48.31/-00.5/ PSF 80"X 80° 80'X 80' 4 STORM SHUTTERS NOT 06D8%.% FRENCH DOORCHOICE OF REQUIRED GLAZING OPTIONS 1-4 JEL0.WEN SERIES "JELD-WEN IMPACT RESISTANT 7 STEEL" STEEL EDGE 80•OD/.80.00 PSF 48.57/-63.82 PSF 30°X 80° 30'X 80' S STORMSHUTTERSNOT 02-1211.13 OUTSWING OPAQUE REQUIRED INSULATED STEEL DOOR 5/24/2007 WIND02 v2-03 Detailed Wind Load Design (Method 2) per ASCE 7-02 Description: 5766-404 Analvsis bv: STB Calculated Parameters Type of Structure Height/Least Horizontal Dim 0.31 FleAble Structure Yes Gust Factor Category I: Rigid Structures -Simplified Method Gust1 For rigid structures (Nat Freq > 1 Hz) use 0.85 0 Gust Factor Category II: Rigid Structures - Complete Analysis Zm Zmin 15.00 ft Izm Cc * (33/z)A0.167 0.2281 Urn 1*(zm/33)AEpsi1on 427.06 ft Q 1/ 1+0.63' Min B,L +Ht /Lzm A0.63 A0.5 0.8946 Gust2 0.925*((1+1.7*Izm*3.4*0)/(1+1.7°3.4*Izm)) 0.8695 Gust factor Category III: Flexible or Dynamically Sensitive Structures ref 600) 212.67 ft/s Vzm 3)AAm*Vhref 122.44 ft/s NF1 Lzm/Vzm 2.79 Hz Rn 1)/ 1+10.302'NFi A1.667 K4N 0.0729 Nh req'HWzm 0.70 Nb re 'BNzm 2.25 Nd req*Dep#Wzm 7.85 Rh -((2'NhA2'(1-Exp(-2'Nh))) 0.6602 Rb 1/Nts(1/(Z'NbA2'(1- (-2*Nb) 0.3463 Rd 1/Nd-(1/(2'NdA2)' 1--2'Nd)) 0.1193 RR ((1/Beta)'Rn*Rh'Rb'(0.53+0.47*Rd))A0.5 0.9886 gg +(2*LN(360Wnl))A0.5+0.5771(2*LN(36OWnl))AO.5 4.14 Gust3 0.925* 1+1.7*Izm* 3.4A2*QA2+GGA2*RRA2 A0.5 / 1+1.7*3.4'Izm 1.19 Gust Factor Summary G 1S5nce this is a fledble structure ME is used I 1.19rii Copyright 2005 www.mecaenterpdses.com Page No. 1 of 5 5/24/2007 WIND02 v2-03 Detailed Wind Load Design (Method 2) per ASCE 7-02 Fig 6-6 Internal Pressure Coefficients for Buildings, Gcpl Condition Gc i Max+ Max - Open Buildings Partially Enclosed Buildings Enclosed Buildings 0.00 0.55 0.18 0.00 -0.55 -0.18 nclosed Buildings 0.18 -0.18 Copyright 2005 www.mecaenterprises.com Page No. 2 of 5 6/24/2007 b WIND02 v2-03 Detailed Wind Load Design (Method 2) per ASCE 7-02 .12.2.1 Design Wind Pressure - Buildings of All He!q Elev 0 Kz Kzt qz Ib/ft"2 Pressure Ib/ft"2 Windward Wall* +GCpi I -GCpi 27 0.96 1.00 43.95 34.09 49.42 23.25 0.93 1.00 42.59 32.79 48.13 20 0.90 1.00 41.26 31.53 46.86 19.5 0.90 1.00 41.04 31.32 46.65 11 15 1 0.85 1 1.00 1 38.84 29.23 44.56 11 'rwuir: v-v - r Loads on Main z Systems L h Variable Formula Value 2.01*(Ht/zg)^(2/Ai ha) 0.93 Kht Topographic factor Fg64) 1.00 qUnitsKh Qh .00256* A2*I'Kh*Kht*Kd 42.59Khcc Comp & Clad: Table 6-3 Case 1 0.93Qhcc .00256*yA2*rKhcc•Kht*Kd 42.59 Wall Pressure Coefficients, Cp Surface C Windward Wall See Fi ure 6.5.12.2.1 for Pressures 0.8 Roof Pressure Coefficients, Cp Roof Areas , ft. - Reduction Factor I 1.00 Runs may be req'd for other wind directs Walls (Wind Dir Normal to 75 ft wa10 Walls (Wind Dir Normal to 78 ftwall) - Max Cp Copyright 2005 -0.50 -32.95 -17 -0.70 -43.07 -27 0.10 -2.60 www.mecaerrterpdses.com Page No. 3 of 5 5/24/2007 WIND02 v2-03 Detailed Wind Load Design (Method 2) per ASCE 7-02 Normal to Ridge -0.57 -36A3 -21 1 Top (Windward) -0.39 -19.62 -1f 1 Top (Leeward) -0.57 -28.76 -2E 1 Bottom (Applicable on Windward only) 0.80 38.99 3E (loot- Wind Parallel to Ridge All Theta) - for Wind Normal to 78 ft face Dist from Windward Edge: 0 it to 46.5 ft - Max Cp -0.18 -16.77 -1.44 Dist from Windward Edge: 0 ft to 11.625 ft- Min Cp -0.90 -53.18 -37.85 Dist from Windward Edge: 11.625 ft to 23.25 ft - Min t -0.90 -53.18 -37.85 Dist from Windward Edge: 23.25 ft to 46.5 ft - Min Cp -0.50 -32.95 -17.62 Dist from Windward Edge: > 46.5 ft -0.30 -22.84 -7.51 Figure 6-11 - Exterftai Pressure Coefficients, GCP Loads an Components and Cladding for Buildings w/ Ht <= 60 it 2� -a a Hipped Roof 7 < Theta <= 27 a = 7.5 => 1 7.50 ft Double Click on any data entry line to receive a help Screen Component width (ft) span (ft) Area (ftA2) Zone GCp Wind Press Ibi tA2 Max Min Max Min 36"x 60" window 3 5 15.00 5 0.97 -1.34 48.93 -64.64 36"x 78" window 3 6.5 19.50 5 0.95 -1.30 48.08 -62.93 60"x 36" window 5 3 15.00 5 0.97 -1.34 48.93 -64.64 24"x 40" window 2 3.3 6.60 4 1.00 -1.10 50.26 -54.52 60"x 60" window 5 5 25.00 4 0.93 -1.03 47.26 -51.52 60"x 90" window 5 7.5 37.50 4 0.90 -1.00 45.94 -50.20 48"x 60" window 4 5 1 20.00 5 0.95 -1.29 47.99 -62.76 30" x 80" door 2.5 6.7 16.75 5 0.96 -1.32 48.57 -63.92 60"x 80" door 5 6.7 33.50 4 0.91 -1.01 46.31 -50.57 60"x 110" door 5 9 45.00 4 0.88 -0.98 45.34 -49.60 9'x 7' garage door 9 7 63.00 5 0.86 -1.12 44.24 -55.27 60"x 96" door 5 8 40.00 4 0.89 -0.99 45.73 -49.99 72'k 80" door 6 6.7 40.20 4 0.89 -0.99 45.71 -49.97 72"X 96" door 1 6 8 48.00 5 0.88 -1.16 45.13 -57.05 corner pressure 3.3 3.3 10.89 3 0.49 -1.68 28.65 -79.28 11 Copyright 2005 www.mecaerlterpdses.com Page No. 4 of 5 5/24/2007 WIND02 v2-03 Detailed Wind Load Design (Method 2) per ASCE 7-02 perimeter pressure 3.3 1 3.3 1 10.89 J 2 0.49 1 -1.68 1 28.65 1 -79.28 field pressure 3.3 3.3 10.89 1 0.49 -0.90 28.65 -45.84 Note: * Enter Zone 1 through 5, or 1 H through 3H for overhangs. Copyright 2005 www.mecaervterpdses.com Page No. 5 of 5